Dendritic coincidence detection in Purkinje neurons of awake mice

  1. Christopher J Roome  Is a corresponding author
  2. Bernd Kuhn  Is a corresponding author
  1. OIST Graduate University, Japan

Abstract

Dendritic coincidence detection is thought fundamental to neuronal processing yet remains largely unexplored in awake animals. Specifically, the underlying dendritic voltage-calcium relationship has not been directly addressed. Here, using simultaneous voltage and calcium two-photon imaging of Purkinje neuron spiny dendrites, we show how coincident synaptic inputs and resulting dendritic spikes modulate dendritic calcium signaling during sensory stimulation in awake mice. Sensory stimulation increased the rate of post-synaptic potentials and dendritic calcium spikes evoked by climbing fiber and parallel fiber synaptic input. These inputs are integrated in a time-dependent and non-linear fashion to enhance the sensory evoked dendritic calcium signal. Intrinsic supralinear dendritic mechanisms, including voltage-gated calcium channels and metabotropic glutamate receptors, are recruited cooperatively to expand the dynamic range of sensory evoked dendritic calcium signals. This establishes how dendrites can use multiple interplaying mechanisms to perform coincidence detection, as a fundamental and ongoing feature of dendritic integration in behaving animals.

Data availability

Matlab codes are available at: https://github.com/cjroome/Roome_and_Kuhn_2020Data is available at: https://doi.org/10.5061/dryad.6hdr7sqzt

The following data sets were generated

Article and author information

Author details

  1. Christopher J Roome

    Optical Neuroimaging, OIST Graduate University, Onna, Japan
    For correspondence
    christopher.roome@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8936-668X
  2. Bernd Kuhn

    Optical Neuroimaging, OIST Graduate University, Onna, Japan
    For correspondence
    bkuhn@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6852-2433

Funding

Okinawa Institute of Science and Technology Graduate University

  • Christopher J Roome
  • Bernd Kuhn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in accordance with guidelines of the Okinawa Institute of Science and Technology Institutional Animal Care and Use Committee in an Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC International)-accredited facility, under protocol numbers: 2016-170, 2019-279.

Copyright

© 2020, Roome & Kuhn

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,160
    views
  • 288
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher J Roome
  2. Bernd Kuhn
(2020)
Dendritic coincidence detection in Purkinje neurons of awake mice
eLife 9:e59619.
https://doi.org/10.7554/eLife.59619

Share this article

https://doi.org/10.7554/eLife.59619

Further reading

    1. Neuroscience
    Mark M Churchland
    Insight

    Computational principles shed light on why movement is preceded by preparatory activity within the neural networks that control muscles.

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.