LRRC8A is essential for hypotonicity-, but not for DAMP-induced NLRP3 inflammasome activation

  1. Jack P Green  Is a corresponding author
  2. Tessa Swanton
  3. Lucy V Morris
  4. Lina Y El-Sharkawy
  5. James Cook
  6. Shi Yu
  7. James Beswick
  8. Antony D Adamson
  9. Neil E Humphreys
  10. Richard Bryce
  11. Sally Freeman
  12. Catherine Lawrence
  13. David Brough  Is a corresponding author
  1. Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
  2. Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
  3. Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, United Kingdom
  4. Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
  5. EMBL-ROME, Epigenetics and Neurobiology Unit, Adriano Buzzati-Traverso Campus, Italy
6 figures, 2 videos, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
Modelling of proposed VRAC inhibitors on the Cryo-EM structure of LRRC8 channels.

(A) Two orthogonal views: a side view with two chains removed from the hexameric LRRC8A protein with bound DCPIB and a top view for the hexameric VRAC channel (PDB:6NZW). (B, D–I) Docked VRAC …

Figure 1—figure supplement 1
Further modelling of VRAC inhibitors.

(A) Top view and (B) side view of the cryo-EM structure of DCPIB in the arginine pore of VRAC (C–I). Molecular surfaces coloured by electrostatic potential for the docked poses of VRAC inhibitors, …

VRAC inhibitors block hypotonicity-induced Cl- channel opening and regulatory volume decrease (RVD).

(A) Cl- channel opening measured in HeLa cells transiently expressing the halide-sensitive EYFP (H148Q/I152L). HeLa cells were pre-treated with a vehicle control (DMSO) or DCPIB (10 µM) and …

Figure 3 with 1 supplement
VRAC inhibitors differentially regulate NLRP3.

(A) IL-1β release was determined by ELISA on supernatants from murine bone marrow derived macrophages (BMDMs). LPS-primed (1 µg mL−1, 4 hr) BMDMs were pre-treated with either a vehicle control …

Figure 3—figure supplement 1
Dose-response curve for DCPIB.

IL-1β release detected by ELISA on supernatants from LPS-primed (1 µg mL−1, 4 hr) bone-marrow-derived macrophages (BMDM) pre-treated with the indicated dose of DCPIB (0.03–100 µM, 15 min) before …

Figure 4 with 1 supplement
Lrrc8a KO macrophages are unable to undergo hypotonicity-induced regulatory volume decrease (RVD).

(A) Generation of LRRC8A conditional allele. LRRC8A is found on mouse chromosome two and consists of four exons. Untranslated sequences are represented by black boxes, and coding sequences by grey …

Figure 4—figure supplement 1
Effect of VRAC inhibitors on the RVD response of WT and Lrrc8a KO BMDMs.

Relative cell size of wild-type (WT) or Lrrc8a knockout (KO) murine bone marrow derived macrophages (BMDMs) incubated in isotonic (340 mOsm kg−1) or hypotonic (117 mOsm kg−1) solution, pre-treated …

Figure 5 with 1 supplement
LRRC8A is dispensable for activation of the NLRP3 inflammasome.

(A) IL-1β release was determined by ELISA on supernatants from wild-type (WT) or Lrrc8a knockout (KO) bone-marrow-derived macrophages (BMDMs). Naïve or LPS-primed (1 µg mL−1, 4 hr) BMDMs were …

Figure 5—figure supplement 1
Loss of LRRC8a does not affect myeloid populations in the peritoneum.

(A–B) IL-6 detected by ELISA in the peritoneal lavage (A) or plasma (B) from wild-type mice. Mice were pre-treated intraperitoneally (i.p.) with a vehicle control, NS3728 (NS3, 50 mg kg−1) or MCC950 …

LRRC8A is an essential component of hypotonicity-induced NLRP3 activation.

(A) IL-1β release was determined by ELISA on supernatants from wild-type (WT) or Lrrc8a knockout (KO) bone marrow derived macrophages (BMDMs). LPS-primed (1 µg mL−1, 4 hr) wild-type (WT) or Lrrc8a

Videos

Video 1
Phase contrast time-lapse of the regulatory volume decrease of wild-type (WT) littermate bone marrow-derived macrophages (BMDMs).

WT BMDMs were incubated in an isotonic buffer (340 mOsm kg−1) for 5 min before dilution to a hypotonic solution (117 mOsm kg−1) for the duration of the recording. Images were captured every minute …

Video 2
Phase contrast time-lapse of the regulatory volume decrease of Lrrc8a knockout (KO) bone-marrow-derived macrophages (BMDMs).

Lrrc8a KO BMDMs were incubated in an isotonic buffer (340 mOsm kg−1) for 5 min before dilution to a hypotonic solution (117 mOsm kg−1) for the duration of the recording. Images were captured every …

Tables

Key resources table
Reagent type
(species)
or resource
DesignationSource or
reference
IdentifiersAdditional
information
Genetic reagent (Mus musculus)C57BL/6JCharles RiverC57BL/6NCrl
Genetic reagent (Mus musculus)C57BL/6J.LRRC8AEm1Uman
(Lrrc8afl/fl)
This paperLine maintained by David Brough lab, University of Manchester
Genetic reagent (Mus musculus)B6J.B6N(Cg)-Cx3cr1tm1.1(cre)Jung/JJackson labStock No: 025524
RRID:IMSR_JAX:025524
Obtained from breeding colony managed by John Grainger lab (University of Manchester)
Cell line (Mus musculus)Bone-marrow-derived macrophages (BMDMs)In houseGenerated from bone marrow from above mouse lines
Cell line (Mus musculus)Peritoneal macrophagesIn houseGenerated by peritoneal lavage from above mouse lines
Cell line
(Homo Sapien)
HeLaATCCHeLa (ATCC CCL-2) RRID:CVCL_0030
AntibodyAnti-mouse IL-1β (goat polyclonal)R and D SystemsAF-401-NA
RRID:AB_416684
(1:500)
AntibodyAnti-Caspase1 + p10 + p12 (rabbit monoclonal)Abcamab179515(1:1000)
AntibodyAnti- mouse GSDMD (rabbit monoclonal)Abcamab209845
RRID:AB_2783550
(1:1000)
AntibodyAnti-mouse ASC/TMS1 (D2W8U) (rabbit monoclonal)Cell Signaling Technology67824
RRID:AB_2799736
(1:1000)
AntibodyLRRC8A (8H9) (mouse monoclonal)Santa Cruzsc-517113(1:200)
AntibodyAnti-β-Actin−Peroxidase (mouse monoclonal)SigmaA3854
RRID:AB_262011
(1:20000)
AntibodyAnti-Rabbit Immunoglobulins HRP (goat polyclonal)AgilentP044801-2
RRID:AB_2617138
(1:1000)
AntibodyAnti-Mouse Immunoglobulins HRP (rabbit polyclonal)AgilentP026002-2
RRID:AB_2636929
(1:1000)
AntibodyAnti-Goat Immunoglobulins HRP (rabbit polyclonal)AgilentP044901-2(1:1000)
Recombinant DNA reagentpcDNA3.1 Hygro EYFP H148Q/I152LAddgene25874
RRID:Addgene_25874
A gift from Peter Haggie
Commercial assay or kitCytoTox 96 Non-Radioactive Cytotoxicity (LDH) AssayPromegaG1780
Commercial assay or kitMouse IL-1β/IL-1F2 DuoSet ELISAR and D systemsDY401
Chemical compound, drugLipopolysaccharides from Escherichia coli O26:B6SigmaL2654For in vitro experiments
Chemical compound, drugLipopolysaccharides from Escherichia coli O127:B8 (in vivo)SigmaL3880For in vivo experiments
Chemical compound, drugAdenosine Triphosphate (ATP)SigmaA2383
Chemical compound, drugNigericin sodium saltSigmaN7143
Chemical compound, drugSilicaU.S. SilicaMIN-U-SIL 15
Chemical compound, drugImiquimodInvivoGenR837
Chemical compound, drugTamoxifenSigmaT5648
Chemical compound, drug4-Sulfonic calix[6]arene HydrateThermo Fisher10494735
Chemical compound, drug4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (DCPIB)Tocris1540
Chemical compound, drugFlufenamic acid (FFA)SigmaF9005
Chemical compound, drugNS3728David Brough Lab, University of Manchester
Chemical compound, drugCP-456773 sodium salt (MCC950)SigmaPZ0280
Chemical compound, drugNBC19David Brough Lab, University of ManchesterPMID:28943355
Chemical compound, drugCalcein, AM, cell-permeant dyeThermo FisherC1430
Chemical compound, drugDisuccinimidyl suberate (DSS)Thermo Fisher21555

Additional files

Download links