An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats

Abstract

The use of Neuropixels probes for chronic neural recordings is in its infancy and initial studies leave questions about long-term stability and probe reusability unaddressed. Here we demonstrate a new approach for chronic Neuropixels recordings over a period of months in freely moving rats. Our approach allows multiple probes per rat and multiple cycles of probe reuse. We found that hundreds of units could be recorded for multiple months, but that yields depended systematically on anatomical position. Explanted probes displayed a small increase in noise compared to unimplanted probes, but this was insufficient to impair future single-unit recordings. We conclude that cost-effective, multi-region, and multi-probe Neuropixels recordings can be carried out with high yields over multiple months in rats or other similarly sized animals. Our methods and observations may facilitate the standardization of chronic recording from Neuropixels probes in freely moving animals.

Data availability

All data generated or analyzed during this study can be found at https://doi.org/10.5061/dryad.m63xsj3zw. All code used in preparation of this article can be found at https://github.com/Brody-Lab/chronic_neuropixels.

The following data sets were generated

Article and author information

Author details

  1. Thomas Zhihao Luo

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    thomas.zhihao.luo@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7774-1697
  2. Adrian Gopnik Bondy

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    adrian.bondy@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7265-5810
  3. Diksha Gupta

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8811-3311
  4. Verity Alexander Elliott

    Neuroscience, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles D Kopec

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos D Brody

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4201-561X

Funding

National Institute of Mental Health (R01MH108358)

  • Thomas Zhihao Luo
  • Adrian Gopnik Bondy
  • Diksha Gupta
  • Verity Alexander Elliott
  • Charles D Kopec
  • Carlos D Brody

National Institute of Mental Health (F32MH115416)

  • Thomas Zhihao Luo

Howard Hughes Medical Institute

  • Thomas Zhihao Luo
  • Adrian Gopnik Bondy
  • Diksha Gupta
  • Verity Alexander Elliott
  • Charles D Kopec
  • Carlos D Brody

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lisa Giocomo, Stanford School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1853) of Princeton University. All surgery was performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: June 5, 2020
  2. Accepted: October 21, 2020
  3. Accepted Manuscript published: October 22, 2020 (version 1)
  4. Version of Record published: December 7, 2020 (version 2)

Copyright

© 2020, Luo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,867
    views
  • 751
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Zhihao Luo
  2. Adrian Gopnik Bondy
  3. Diksha Gupta
  4. Verity Alexander Elliott
  5. Charles D Kopec
  6. Carlos D Brody
(2020)
An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats
eLife 9:e59716.
https://doi.org/10.7554/eLife.59716

Share this article

https://doi.org/10.7554/eLife.59716

Further reading

    1. Neuroscience
    Max Schulz, Malte Wöstmann
    Insight

    Asymmetries in the size of structures deep below the cortex explain how alpha oscillations in the brain respond to shifts in attention.

    1. Neuroscience
    Tara Ghafari, Cecilia Mazzetti ... Ole Jensen
    Research Article

    Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.