Feedback control of Wnt signaling based on ultrastable histidine cluster co-aggregation between Naked/NKD and Axin

Abstract

Feedback control is a universal feature of cell signaling pathways. Naked/NKD is a widely conserved feedback regulator of Wnt signaling which controls animal development and tissue homeostasis. Naked/NKD destabilizes Dishevelled, which assembles Wnt signalosomes to inhibit the b-catenin destruction complex via recruitment of Axin. Here, we discover that the molecular mechanism underlying Naked/NKD function relies on its assembly into ultrastable decameric core aggregates via its conserved C-terminal histidine cluster (HisC). HisC aggregation is facilitated by Dishevelled and depends on accumulation of Naked/NKD during prolonged Wnt stimulation. Naked/NKD HisC cores co-aggregate with a conserved histidine cluster within Axin, to destabilize it along with Dishevelled, possibly via the autophagy receptor p62 which binds to HisC aggregates. Consistent with this, attenuated Wnt responses are observed in CRISPR-engineered flies and human epithelial cells whose Naked/NKD HisC has been deleted. Thus, HisC aggregation by Naked/NKD provides context-dependent feedback control of prolonged Wnt responses.

Data availability

All data generated and analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Melissa V Gammons

    MRC Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9661-9331
  2. Miha Renko

    MRC Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Joshua E Flack

    MRC Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Juliusz Mieszczanek

    MRC Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Mariann Bienz

    MRC Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    For correspondence
    mb2@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7170-8706

Funding

Cancer Research UK (C7379/A24639)

  • Mariann Bienz

Medical Research Council (U105192713)

  • Mariann Bienz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Gammons et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,279
    views
  • 205
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melissa V Gammons
  2. Miha Renko
  3. Joshua E Flack
  4. Juliusz Mieszczanek
  5. Mariann Bienz
(2020)
Feedback control of Wnt signaling based on ultrastable histidine cluster co-aggregation between Naked/NKD and Axin
eLife 9:e59879.
https://doi.org/10.7554/eLife.59879

Share this article

https://doi.org/10.7554/eLife.59879

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.