Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin α3

  1. Jeong Hyang Park
  2. Chang Geon Chung
  3. Sung Soon Park
  4. Davin Lee
  5. Kyung Min Kim
  6. Yeonjin Jeong
  7. Eun Seon Kim
  8. Jae Ho Cho
  9. Yu-Mi Jeon
  10. C-K James Shen
  11. Hyung-Jun Kim
  12. Daehee Hwang  Is a corresponding author
  13. Sung Bae Lee  Is a corresponding author
  1. DGIST, Republic of Korea
  2. Seoul National University, Republic of Korea
  3. KBRI, Republic of Korea
  4. Academia Sinica, Taiwan

Abstract

Cytoplasmic accumulation of TDP-43 in motor neurons is the most prominent pathological feature in amyotrophic lateral sclerosis (ALS). A feedback cycle between nucleocytoplasmic transport (NCT) defect and TDP-43 aggregation was shown to contribute to accumulation of TDP-43 in the cytoplasm. However, little is known about cellular factors that can control the activity of NCT, thereby affecting TDP-43 accumulation in the cytoplasm. Here, we identified via FRAP and optogenetics cytosolic calcium as a key cellular factor controlling NCT of TDP-43. Dynamic and reversible changes in TDP-43 localization were observed in Drosophila sensory neurons during development. Genetic and immunohistochemical analyses identified the cytosolic calcium-Calpain-A-Importin α3 pathway as a regulatory mechanism underlying NCT of TDP-43. In C9orf72 ALS fly models, upregulation of the pathway activity by increasing cytosolic calcium reduced cytoplasmic accumulation of TDP-43 and mitigated behavioral defects. Together, these results suggest the calcium-Calpain-A-Importin α3 pathway as a potential therapeutic target of ALS.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jeong Hyang Park

    Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7392-8366
  2. Chang Geon Chung

    Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8155-4926
  3. Sung Soon Park

    Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Davin Lee

    Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyung Min Kim

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Yeonjin Jeong

    Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Eun Seon Kim

    Dementia research group, KBRI, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Jae Ho Cho

    Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Yu-Mi Jeon

    Dementia research group, KBRI, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. C-K James Shen

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  11. Hyung-Jun Kim

    Dementia research group, KBRI, Daegu, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  12. Daehee Hwang

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
    For correspondence
    daehee@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
  13. Sung Bae Lee

    Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
    For correspondence
    sblee@dgist.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8980-6769

Funding

Ministry of Science and ICT, South Korea (2018R1A2B6001607)

  • Sung Bae Lee

Ministry of Science and ICT, South Korea (2019R1A4A1024278)

  • Sung Bae Lee

Korea Research Institute of Standards and Science (KRISS-2019-GP2019-0018)

  • Sung Bae Lee

Ministry of Science and ICT, South Korea (20-BR-04-02)

  • Sung Bae Lee

Ministry of Science and ICT, South Korea (IBS-R013-A1)

  • Daehee Hwang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,284
    views
  • 531
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeong Hyang Park
  2. Chang Geon Chung
  3. Sung Soon Park
  4. Davin Lee
  5. Kyung Min Kim
  6. Yeonjin Jeong
  7. Eun Seon Kim
  8. Jae Ho Cho
  9. Yu-Mi Jeon
  10. C-K James Shen
  11. Hyung-Jun Kim
  12. Daehee Hwang
  13. Sung Bae Lee
(2020)
Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin α3
eLife 9:e60132.
https://doi.org/10.7554/eLife.60132

Share this article

https://doi.org/10.7554/eLife.60132

Further reading

    1. Neuroscience
    Yanqi Liu, Pol Bech ... Carl CH Petersen
    Research Article

    Long-range axonal projections of diverse classes of neocortical excitatory neurons likely contribute to brain-wide interactions processing sensory, cognitive and motor signals. Here, we performed light-sheet imaging of fluorescently labeled axons from genetically defined neurons located in posterior primary somatosensory barrel cortex and supplemental somatosensory cortex. We used convolutional networks to segment axon-containing voxels and quantified their distribution within the Allen Mouse Brain Atlas Common Coordinate Framework. Axonal density was analyzed for different classes of glutamatergic neurons using transgenic mouse lines selectively expressing Cre recombinase in layer 2/3 intratelencephalic projection neurons (Rasgrf2-dCre), layer 4 intratelencephalic projection neurons (Scnn1a-Cre), layer 5 intratelencephalic projection neurons (Tlx3-Cre), layer 5 pyramidal tract projection neurons (Sim1-Cre), layer 5 projection neurons (Rbp4-Cre), and layer 6 corticothalamic neurons (Ntsr1-Cre). We found distinct axonal projections from the different neuronal classes to many downstream brain areas, which were largely similar for primary and supplementary somatosensory cortices. Functional connectivity maps obtained from optogenetic activation of sensory cortex and wide-field imaging revealed topographically organized evoked activity in frontal cortex with neurons located more laterally in somatosensory cortex signaling to more anteriorly located regions in motor cortex, consistent with the anatomical projections. The current methodology therefore appears to quantify brain-wide axonal innervation patterns supporting brain-wide signaling.

    1. Neuroscience
    Jun Yang, Hanqi Zhang, Sukbin Lim
    Research Article

    Errors in stimulus estimation reveal how stimulus representation changes during cognitive processes. Repulsive bias and minimum variance observed near cardinal axes are well-known error patterns typically associated with visual orientation perception. Recent experiments suggest that these errors continuously evolve during working memory, posing a challenge that neither static sensory models nor traditional memory models can address. Here, we demonstrate that these evolving errors, maintaining characteristic shapes, require network interaction between two distinct modules. Each module fulfills efficient sensory encoding and memory maintenance, which cannot be achieved simultaneously in a single-module network. The sensory module exhibits heterogeneous tuning with strong inhibitory modulation reflecting natural orientation statistics. While the memory module, operating alone, supports homogeneous representation via continuous attractor dynamics, the fully connected network forms discrete attractors with moderate drift speed and nonuniform diffusion processes. Together, our work underscores the significance of sensory-memory interaction in continuously shaping stimulus representation during working memory.