Chimpanzee brain morphometry utilizing standardized MRI preprocessing and macroanatomical annotations

  1. Sam Vickery  Is a corresponding author
  2. William D Hopkins
  3. Chet C Sherwood
  4. Steven J Schapiro
  5. Robert D Latzman
  6. Svenja Caspers
  7. Christian Gaser
  8. Simon B Eickhoff
  9. Robert Dahnke  Is a corresponding author
  10. Felix Hoffstaedter  Is a corresponding author
  1. Research Centre Jülich, Germany
  2. MD Anderson Center, United States
  3. The George Washington University, United States
  4. Georgia State University, United States
  5. University of Jena, Germany
  6. Jena University Hospital, Germany

Abstract

Chimpanzees are among the closest living relatives to humans and, as such, provide a crucial comparative model for investigating primate brain evolution. In recent years, human brain mapping has strongly benefited from enhanced computational models and image processing pipelines that could also improve data analyses in animals by using species-specific templates. In this study, we use structural MRI data from the National Chimpanzee Brain Resource (NCBR) to develop the chimpanzee brain reference template Juna.Chimp for spatial registration and the macro-anatomical brain parcellation Davi130 for standardized whole-brain analysis. Additionally, we introduce a ready-to-use image processing pipeline built upon the CAT12 toolbox in SPM12, implementing a standard human image preprocessing framework in chimpanzees. Applying this approach to data from 194 subjects, we find strong evidence for human-like age-related gray matter atrophy in multiple regions of the chimpanzee brain, as well as, a general rightward asymmetry in brain regions.

Data availability

The T1-weighted MRI's can are available at the National Chimpanzee Brain Resource Website as well as the direct-to-download dataset we used for our example workflow.The code used in the manuscript can be found at this GitHub repo https://github.com/viko18/JunaChimp

Article and author information

Author details

  1. Sam Vickery

    Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
    For correspondence
    s.vickery@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6732-7014
  2. William D Hopkins

    MD Anderson Center, Bastrop, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chet C Sherwood

    Department of Anthropology, The George Washington University, Washington, DC, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6711-449X
  4. Steven J Schapiro

    MD Anderson Center, Bastrop, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert D Latzman

    Psychology, Georgia State University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1175-8090
  6. Svenja Caspers

    Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Gaser

    University of Jena, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon B Eickhoff

    Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6363-2759
  9. Robert Dahnke

    Department of Neurolgy; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
    For correspondence
    robert.dahnke@uni-jena.de
    Competing interests
    The authors declare that no competing interests exist.
  10. Felix Hoffstaedter

    Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
    For correspondence
    f.hoffstaedter@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7163-3110

Funding

Helmholtz Association (Helmholtz Portfolio Theme 'Supercomputing and Modelling for the Human Brain)

  • Sam Vickery
  • Simon B Eickhoff
  • Felix Hoffstaedter

Deutsche Forschungsgemeinschaft (417649423)

  • Robert Dahnke

European Commission Horizon 2020 (945539 (HBP SGA 3))

  • Sam Vickery
  • Simon B Eickhoff
  • Felix Hoffstaedter

Helmholtz Association (Initiative and Networking Fund)

  • Svenja Caspers

European Commission Horizon 2020 (785907 (HBP SGA 2))

  • Svenja Caspers

National Institutes of Health (NS-42867,NS-73134,NS-92988)

  • William D Hopkins

National Institutes of Health (NS092988)

  • Chet C Sherwood

James S. McDonnell Foundation (220020293)

  • Chet C Sherwood

Inspire Foundation (SMA-1542848)

  • Chet C Sherwood

National Institutes of Health (U42-OD011197)

  • Steven J Schapiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The chimpanzee imaging data were acquired under protocols approved by the Yerkes National Primate Research Center (YNPRC) at Emory University Institutional Animal Care and Use Committee (Approval number YER2001206).

Copyright

© 2020, Vickery et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,054
    views
  • 221
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sam Vickery
  2. William D Hopkins
  3. Chet C Sherwood
  4. Steven J Schapiro
  5. Robert D Latzman
  6. Svenja Caspers
  7. Christian Gaser
  8. Simon B Eickhoff
  9. Robert Dahnke
  10. Felix Hoffstaedter
(2020)
Chimpanzee brain morphometry utilizing standardized MRI preprocessing and macroanatomical annotations
eLife 9:e60136.
https://doi.org/10.7554/eLife.60136

Share this article

https://doi.org/10.7554/eLife.60136

Further reading

    1. Neuroscience
    Samyogita Hardikar, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.