Dissociation of task engagement and arousal effects in auditory cortex and midbrain

  1. Daniela Saderi
  2. Zachary P Schwartz
  3. Charles R Heller
  4. Jacob R Pennington
  5. Stephen V David  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Washington State University, United States

Abstract

Both generalized arousal and engagement in a specific task influence sensory neural processing. To isolate effects of these state variables in the auditory system, we recorded single-unit activity from primary auditory cortex (A1) and inferior colliculus (IC) of ferrets during a tone detection task, while monitoring arousal via changes in pupil size. We used a generalized linear model to assess the influence of task engagement and pupil size on sound-evoked activity. In both areas, these two variables affected independent neural populations. Pupil size effects were more prominent in IC, while pupil and task engagement effects were equally likely in A1. Task engagement was correlated with larger pupil; thus, some apparent effects of task engagement should in fact be attributed to fluctuations in pupil size. These results indicate a hierarchy of auditory processing, where generalized arousal enhances activity in midbrain, and effects specific to task engagement become more prominent in cortex.

Data availability

Neurophysiology data will be made available via Zenodo. Software used for analysis is available via GitHub.

The following data sets were generated

Article and author information

Author details

  1. Daniela Saderi

    Neuroscience Graduate Program, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zachary P Schwartz

    Neuroscience Graduate Program, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Charles R Heller

    Neuroscience Graduate Program, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jacob R Pennington

    Mathematics, Washington State University, Vancouver, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen V David

    Otolaryngology, Oregon Health and Science University, Portland, United States
    For correspondence
    davids@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4135-3104

Funding

National Institutes of Health (F31 DC014888)

  • Daniela Saderi

National Institutes of Health (R01 DC04950)

  • Stephen V David

National Institutes of Health (R01 EB028155)

  • Stephen V David

National Institutes of Health (F31 DC016204)

  • Zachary P Schwartz

National Science Foundation (GVPRS0015A2)

  • Charles R Heller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Oregon Health and Science University Institutional Animal Care and Use Committee (protocol IP1561) and conform to National Institutes of Health standards.

Copyright

© 2021, Saderi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,716
    views
  • 205
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniela Saderi
  2. Zachary P Schwartz
  3. Charles R Heller
  4. Jacob R Pennington
  5. Stephen V David
(2021)
Dissociation of task engagement and arousal effects in auditory cortex and midbrain
eLife 10:e60153.
https://doi.org/10.7554/eLife.60153

Share this article

https://doi.org/10.7554/eLife.60153

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.