Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement

  1. Ashley L Kalinski
  2. Choya Yoon
  3. Lucas D Huffman
  4. Patrick C Duncker
  5. Rafi Kohen
  6. Ryan Passino
  7. Hannah Hafner
  8. Craig Johnson
  9. Riki Kawaguchi
  10. Kevin S Carbajal
  11. Juan Sebastian Jara
  12. Edmund R Hollis II
  13. Daniel H Geschwind
  14. Benjamin M Segal
  15. Roman J Giger  Is a corresponding author
  1. University of Michigan Medical School, United States
  2. University of California, Los Angeles, United States
  3. Burke Neurological Institute, United States
  4. The Ohio State University Wexner Medical Center, United States
  5. University of Michigan School of Medicine, United States

Abstract

Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first, and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages 'eat' apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion induced neurorepair.

Data availability

The bulk RNA-seq and scRNA-seq data is available online in the Gene Expression Omnibus (GEO) database (GSE153762).

Article and author information

Author details

  1. Ashley L Kalinski

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7611-0810
  2. Choya Yoon

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas D Huffman

    Department of Cell and Developmental Biology; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick C Duncker

    Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafi Kohen

    Department of Cell and Developmental Biology; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ryan Passino

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hannah Hafner

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Craig Johnson

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Riki Kawaguchi

    Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kevin S Carbajal

    Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Juan Sebastian Jara

    Research, Burke Neurological Institute, White Plains, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Edmund R Hollis II

    Research, Burke Neurological Institute, White Plains, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4535-4668
  13. Daniel H Geschwind

    Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2896-3450
  14. Benjamin M Segal

    Department of Neurology; The Neurological Institute, The Ohio State University Wexner Medical Center, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Roman J Giger

    Cellular & Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
    For correspondence
    rgiger@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2926-3336

Funding

New York State Department of Health (C33267GG)

  • Edmund R Hollis II
  • Roman J Giger

National Eye Institute (R01EY029159)

  • Benjamin M Segal
  • Roman J Giger

National Eye Institute (R01EY028350)

  • Benjamin M Segal
  • Roman J Giger

National Institute of Neurological Disorders and Stroke (T32 NS07222)

  • Ashley L Kalinski

National Institute of General Medical Sciences (T32-GM113900)

  • Lucas D Huffman

Wings for Life (fellowship)

  • Choya Yoon

Dr Miriam and Sheldon G. Adelson Medical Research Foundation (Program)

  • Riki Kawaguchi
  • Daniel H Geschwind
  • Roman J Giger

Stanley D. and Joan H. Ross Chair in Neuromodulation fund

  • Benjamin M Segal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal research was approved by the University of Michigan School of Medicine and conducted under the IACUC approved protocol PRO00007948

Copyright

© 2020, Kalinski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,851
    views
  • 1,036
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashley L Kalinski
  2. Choya Yoon
  3. Lucas D Huffman
  4. Patrick C Duncker
  5. Rafi Kohen
  6. Ryan Passino
  7. Hannah Hafner
  8. Craig Johnson
  9. Riki Kawaguchi
  10. Kevin S Carbajal
  11. Juan Sebastian Jara
  12. Edmund R Hollis II
  13. Daniel H Geschwind
  14. Benjamin M Segal
  15. Roman J Giger
(2020)
Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement
eLife 9:e60223.
https://doi.org/10.7554/eLife.60223

Share this article

https://doi.org/10.7554/eLife.60223

Further reading

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.