Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation

  1. Ienglam Lei
  2. Shuo Tian
  3. Wenbin Gao
  4. Liu Liu
  5. Yijing Guo
  6. Paul Tang
  7. Eugene Chen
  8. Zhong Wang  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States

Abstract

Myocardial infarction (MI) is accompanied by severe energy deprivation and extensive epigenetic changes. However, how energy metabolism and chromatin modifications are interlinked during MI and heart repair has been poorly explored. Here, we examined the effect of different carbon sources that are involved in the major metabolic pathways of acetyl-CoA synthesis on myocardial infarction and found that elevation of acetyl-CoA by sodium octanoate (8C) significantly improved heart function in ischemia reperfusion (I/R) rats. Mechanistically, 8C reduced I/R injury by promoting histone acetylation which in turn activated the expression of antioxidant genes and inhibited cardiomyocyte (CM) apoptosis. Furthermore, we elucidated that 8C-promoted histone acetylation and heart repair were carried out by metabolic enzyme medium-chain acyl-CoA dehydrogenase (MCAD) and histone acetyltransferase Kat2a, suggesting that 8C dramatically improves cardiac function mainly through metabolic acetyl-CoA-mediated histone acetylation. Therefore, our study uncovers an interlinked metabolic/epigenetic network comprising 8C, acetyl-CoA, MCAD, and Kat2a to combat heart injury.

Data availability

The RNA-seq data have been deposited in Gene Expression Omnibus with the accession code GSE132515

The following data sets were generated

Article and author information

Author details

  1. Ienglam Lei

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shuo Tian

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wenbin Gao

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Liu Liu

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yijing Guo

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul Tang

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Eugene Chen

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhong Wang

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    zhongw@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8720-4609

Funding

National Institutes of Health (HL109054)

  • Zhong Wang

National Institutes of Health (HL139735)

  • Zhong Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committee of the University of Michigan (PRO00009606) and were performed in accordance with the recommendations of the American Association for the Accreditation of Laboratory Animal Care.

Reviewing Editor

  1. Noriaki Emoto, Kobe Pharmaceutical University, Japan

Publication history

  1. Preprint posted: April 30, 2019 (view preprint)
  2. Received: June 22, 2020
  3. Accepted: December 21, 2021
  4. Accepted Manuscript published: December 23, 2021 (version 1)
  5. Version of Record published: January 17, 2022 (version 2)

Copyright

© 2021, Lei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,720
    Page views
  • 306
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ienglam Lei
  2. Shuo Tian
  3. Wenbin Gao
  4. Liu Liu
  5. Yijing Guo
  6. Paul Tang
  7. Eugene Chen
  8. Zhong Wang
(2021)
Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation
eLife 10:e60311.
https://doi.org/10.7554/eLife.60311

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Liangyu Zhang, Weston T Stauffer ... Abby F Dernburg
    Research Article

    Meiotic chromosome segregation relies on synapsis and crossover recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in 'homolog engagement' is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans, recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break induction. Inactivation of CHK-2 terminates double-strand break formation and enables crossover designation and cell cycle progression. These findings illuminate how meiotic cells ensure crossover formation and accurate chromosome segregation.

    1. Cell Biology
    2. Physics of Living Systems
    Christa Ringers, Stephan Bialonski ... Nathalie Jurisch-Yaksi
    Research Article

    Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.