Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation

  1. Ienglam Lei
  2. Shuo Tian
  3. Wenbin Gao
  4. Liu Liu
  5. Yijing Guo
  6. Paul Tang
  7. Eugene Chen
  8. Zhong Wang  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States

Abstract

Myocardial infarction (MI) is accompanied by severe energy deprivation and extensive epigenetic changes. However, how energy metabolism and chromatin modifications are interlinked during MI and heart repair has been poorly explored. Here, we examined the effect of different carbon sources that are involved in the major metabolic pathways of acetyl-CoA synthesis on myocardial infarction and found that elevation of acetyl-CoA by sodium octanoate (8C) significantly improved heart function in ischemia reperfusion (I/R) rats. Mechanistically, 8C reduced I/R injury by promoting histone acetylation which in turn activated the expression of antioxidant genes and inhibited cardiomyocyte (CM) apoptosis. Furthermore, we elucidated that 8C-promoted histone acetylation and heart repair were carried out by metabolic enzyme medium-chain acyl-CoA dehydrogenase (MCAD) and histone acetyltransferase Kat2a, suggesting that 8C dramatically improves cardiac function mainly through metabolic acetyl-CoA-mediated histone acetylation. Therefore, our study uncovers an interlinked metabolic/epigenetic network comprising 8C, acetyl-CoA, MCAD, and Kat2a to combat heart injury.

Data availability

The RNA-seq data have been deposited in Gene Expression Omnibus with the accession code GSE132515

The following data sets were generated

Article and author information

Author details

  1. Ienglam Lei

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shuo Tian

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wenbin Gao

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Liu Liu

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yijing Guo

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul Tang

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Eugene Chen

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhong Wang

    Department of Cardiac Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    zhongw@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8720-4609

Funding

National Institutes of Health (HL109054)

  • Zhong Wang

National Institutes of Health (HL139735)

  • Zhong Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committee of the University of Michigan (PRO00009606) and were performed in accordance with the recommendations of the American Association for the Accreditation of Laboratory Animal Care.

Reviewing Editor

  1. Noriaki Emoto, Kobe Pharmaceutical University, Japan

Version history

  1. Preprint posted: April 30, 2019 (view preprint)
  2. Received: June 22, 2020
  3. Accepted: December 21, 2021
  4. Accepted Manuscript published: December 23, 2021 (version 1)
  5. Version of Record published: January 17, 2022 (version 2)

Copyright

© 2021, Lei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,575
    Page views
  • 373
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ienglam Lei
  2. Shuo Tian
  3. Wenbin Gao
  4. Liu Liu
  5. Yijing Guo
  6. Paul Tang
  7. Eugene Chen
  8. Zhong Wang
(2021)
Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation
eLife 10:e60311.
https://doi.org/10.7554/eLife.60311

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Bronwyn A Lucas, Benjamin A Himes, Nikolaus Grigorieff
    Research Advance

    Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.

    1. Cell Biology
    2. Immunology and Inflammation
    Yijun Zhang, Tao Wu ... Li Wu
    Research Article

    Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology, however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.