Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway

  1. Elisa Nerli
  2. Mauricio Rocha-Martins
  3. Caren Norden  Is a corresponding author
  1. MPI of Molecular Cell Biology and Genetics, Germany

Abstract

During brain development, progenitor cells need to balance proliferation and differentiation in order to generate different neurons in the correct numbers and proportions. Currently, the patterns of multipotent progenitor divisions that lead to neurogenic entry and the factors that regulate them are not fully understood. We here use the zebrafish retina to address this gap, exploiting its suitability for quantitative live-imaging. We show that early neurogenic progenitors arise from asymmetric divisions. Notch regulates this asymmetry, as when inhibited, symmetric divisions producing two neurogenic progenitors occur. Surprisingly however, Notch does not act through an apicobasal activity gradient as previously suggested, but through asymmetric inheritance of Sara-positive endosomes. Further, the resulting neurogenic progenitors show cell biological features different from multipotent progenitors, raising the possibility that an intermediate progenitor state exists in the retina. Our study thus reveals new insights into the regulation of proliferative and differentiative events during central nervous system development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures for which necessary.

Article and author information

Author details

  1. Elisa Nerli

    MPI of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Mauricio Rocha-Martins

    MPI of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Caren Norden

    MPI of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    cnorden@igc.gulbenkian.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8835-1451

Funding

ERC consolidator grant (H2020 ERC-2018-CoG-81904)

  • Caren Norden

Deutsche Forschungsgemeinschaft (NO 1068/5-1)

  • Caren Norden

Max-Planck-Gesellschaft

  • Caren Norden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work in this study was performed in accordance with European Union directive 2010/63/EU, as well as the German Animal Welfare Act.

Copyright

© 2020, Nerli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,839
    views
  • 367
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisa Nerli
  2. Mauricio Rocha-Martins
  3. Caren Norden
(2020)
Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway
eLife 9:e60462.
https://doi.org/10.7554/eLife.60462

Share this article

https://doi.org/10.7554/eLife.60462