Switch-like control of helicase processivity by single-stranded DNA binding protein

  1. Barbara Stekas
  2. Steve Yeo
  3. Alice Troitskaia
  4. Masayoshi Honda
  5. Sei Sho
  6. Maria Spies
  7. Yann R Chemla  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. University of Iowa, United States

Abstract

Helicases utilize NTP hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. F. acidarmanus XPD helicase serves as a model for understanding the molecular mechanisms of Superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein RPA2. Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.

Data availability

Summary data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, 5 and corresponding figure supplements.

Article and author information

Author details

  1. Barbara Stekas

    Physics, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  2. Steve Yeo

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  3. Alice Troitskaia

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  4. Masayoshi Honda

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8920-6301
  5. Sei Sho

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  6. Maria Spies

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    Maria Spies, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7375-8037
  7. Yann R Chemla

    Physics, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    ychemla@illinois.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9167-0234

Funding

National Institutes of Health (R01 GM120353)

  • Yann R Chemla

National Institutes of Health (R35 GM131704)

  • Maria Spies

National Institutes of Health (R01 GM120353)

  • Barbara Stekas

National Institutes of Health (R35 GM131704)

  • Masayoshi Honda

National Institutes of Health (R01 GM120353)

  • Steve Yeo

National Institutes of Health (R01 GM120353)

  • Alice Troitskaia

National Institutes of Health (R35 GM131704)

  • Sei Sho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Stekas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,629
    views
  • 201
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Barbara Stekas
  2. Steve Yeo
  3. Alice Troitskaia
  4. Masayoshi Honda
  5. Sei Sho
  6. Maria Spies
  7. Yann R Chemla
(2021)
Switch-like control of helicase processivity by single-stranded DNA binding protein
eLife 10:e60515.
https://doi.org/10.7554/eLife.60515

Share this article

https://doi.org/10.7554/eLife.60515

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.