Switch-like control of helicase processivity by single-stranded DNA binding protein

  1. Barbara Stekas
  2. Steve Yeo
  3. Alice Troitskaia
  4. Masayoshi Honda
  5. Sei Sho
  6. Maria Spies
  7. Yann R Chemla  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. University of Iowa, United States

Abstract

Helicases utilize NTP hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. F. acidarmanus XPD helicase serves as a model for understanding the molecular mechanisms of Superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein RPA2. Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.

Data availability

Summary data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, 5 and corresponding figure supplements.

Article and author information

Author details

  1. Barbara Stekas

    Physics, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  2. Steve Yeo

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  3. Alice Troitskaia

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  4. Masayoshi Honda

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8920-6301
  5. Sei Sho

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  6. Maria Spies

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    Maria Spies, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7375-8037
  7. Yann R Chemla

    Physics, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    ychemla@illinois.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9167-0234

Funding

National Institutes of Health (R01 GM120353)

  • Yann R Chemla

National Institutes of Health (R35 GM131704)

  • Maria Spies

National Institutes of Health (R01 GM120353)

  • Barbara Stekas

National Institutes of Health (R35 GM131704)

  • Masayoshi Honda

National Institutes of Health (R01 GM120353)

  • Steve Yeo

National Institutes of Health (R01 GM120353)

  • Alice Troitskaia

National Institutes of Health (R35 GM131704)

  • Sei Sho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Stekas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,651
    views
  • 205
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Barbara Stekas
  2. Steve Yeo
  3. Alice Troitskaia
  4. Masayoshi Honda
  5. Sei Sho
  6. Maria Spies
  7. Yann R Chemla
(2021)
Switch-like control of helicase processivity by single-stranded DNA binding protein
eLife 10:e60515.
https://doi.org/10.7554/eLife.60515

Share this article

https://doi.org/10.7554/eLife.60515

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.