nNOS-expressing interneurons control basal and behaviorally-evoked arterial dilation in somatosensory cortex of mice

  1. Christina Echagarruga
  2. Kyle W Gheres
  3. Jordan N Norwood
  4. Patrick J Drew  Is a corresponding author
  1. Pennsylvania State University, United States

Abstract

Cortical neural activity is coupled to local arterial diameter and blood flow. However, which neurons control the dynamics of cerebral arteries is not well understood. We dissected the cellular mechanisms controlling the basal diameter and evoked dilation in cortical arteries in awake, head-fixed mice. Locomotion drove robust arterial dilation, increases in gamma band power in the local field potential (LFP), and increases calcium signals in pyramidal and neuronal nitric oxide synthase (nNOS)-expressing neurons. Chemogenetic or pharmocological modulation of overall neural activity up or down caused corresponding increases or decreases in basal arterial diameter. Modulation of pyramidal neuron activity alone had little effect on basal or evoked arterial dilation, despite pronounced changes in the LFP. Modulation of the activity of nNOS-expressing neurons drove changes in the basal and evoked arterial diameter without corresponding changes in population neural activity.

Data availability

The Matlab code and data to generate the figures have been uploaded to Dryad. The DOI for download is here:https://doi.org/10.5061/dryad.b8gtht79hPrior to final acceptance, the Matlab code and data to generate the figures is available here:https://datadryad.org/stash/share/c_aYm6WfvBEeWk4W473h_YFFINirRoS_HgIvsWA2ccM

Article and author information

Author details

  1. Christina Echagarruga

    Bioengineering Graduate Program, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle W Gheres

    Molecular Cellular and Integrative Biosciences program, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jordan N Norwood

    Cellular and Developmental Biology Graduate Program, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8093-5938
  4. Patrick J Drew

    Engineering Science and Mechanics, Biomedical Engineering, and Neurosurgery, Pennsylvania State University, University Park, United States
    For correspondence
    PJD17@PSU.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7483-7378

Funding

National Institute of Neurological Disorders and Stroke (R01NS078168)

  • Patrick J Drew

National Institute of Neurological Disorders and Stroke (R01NS101353)

  • Patrick J Drew

National Institute of Neurological Disorders and Stroke (F31NS105461)

  • Jordan N Norwood

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Pennsylvania State University (protocol # 201042827). All surgeries were performed under isoflurane anesthesia and every effort was made to minimize suffering.

Copyright

© 2020, Echagarruga et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,877
    views
  • 434
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christina Echagarruga
  2. Kyle W Gheres
  3. Jordan N Norwood
  4. Patrick J Drew
(2020)
nNOS-expressing interneurons control basal and behaviorally-evoked arterial dilation in somatosensory cortex of mice
eLife 9:e60533.
https://doi.org/10.7554/eLife.60533

Share this article

https://doi.org/10.7554/eLife.60533

Further reading

    1. Neuroscience
    Julieta Gomez-Frittelli, Gabrielle Frederique Devienne ... Julia A Kaltschmidt
    Research Article

    Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here, we investigated synaptic cell adhesion molecules as novel cell-type markers in the ENS. Our work identifies two type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and IH current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current IH disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.