Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period

  1. Qiang Qiu
  2. Yunming Wu
  3. Limei Ma
  4. Wenjing Xu
  5. Max Hills Jnr
  6. Vivekanandan Ramalingam
  7. C Ron Yu  Is a corresponding author
  1. Stowers Institute for Medical Research, United States

Abstract

Animals possess an inborn ability to recognize certain odors to avoid predators, seek food and find mates. Innate odor preference has been thought to be genetically hardwired. Here we report that acquisition of innate odor recognition requires spontaneous neural activity and is influenced by sensory experience during early postnatal development. Genetic silencing of mouse olfactory sensory neurons during the critical period has little impact on odor sensitivity, discrimination, and recognition later in life. However, it abolishes innate odor preference and alters the patterns of activation in brain centers. Moreover, exposure to an aversive odor during the critical period abolishes aversion in adulthood in an odor-specific manner. The loss of innate aversion is associated with broadened projection of OSNs. Thus, a delicate balance of neural activity is required during the critical period in establishing innate odor preference and ectopic projection is a convergent mechanism to alter innate odor valence.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE166457.All other data generated or analysed during this study will be available at https://www.stowers.org/research/publications/LIBPB-1613_2021.

The following data sets were generated

Article and author information

Author details

  1. Qiang Qiu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yunming Wu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Limei Ma

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenjing Xu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Max Hills Jnr

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vivekanandan Ramalingam

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. C Ron Yu

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    cry@stowers.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1555-8683

Funding

National Institutes of Health (R01DC008003)

  • C Ron Yu

National Institutes of Health (R01DC014701)

  • C Ron Yu

National Institutes of Health (R01DC016696)

  • C Ron Yu

Stowers Institute for Medical Research (1021)

  • C Ron Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen Liberles, Harvard Medical School, United States

Ethics

Animal experimentation: Experimental protocols were approved by the Institutional Animal Care and Use Committee at Stowers Institute (protocol 2019-102) and in compliance with the NIH Guide for Care and Use of Animals.

Version history

  1. Received: June 29, 2020
  2. Accepted: March 24, 2021
  3. Accepted Manuscript published: March 26, 2021 (version 1)
  4. Version of Record published: April 8, 2021 (version 2)

Copyright

© 2021, Qiu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,516
    views
  • 397
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiang Qiu
  2. Yunming Wu
  3. Limei Ma
  4. Wenjing Xu
  5. Max Hills Jnr
  6. Vivekanandan Ramalingam
  7. C Ron Yu
(2021)
Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period
eLife 10:e60546.
https://doi.org/10.7554/eLife.60546

Share this article

https://doi.org/10.7554/eLife.60546

Further reading

    1. Neuroscience
    Eugenio Manassero, Giulia Concina ... Benedetto Sacchetti
    Research Article

    Downregulating emotional overreactions toward threats is fundamental for developing treatments for anxiety and post-traumatic disorders. The prefrontal cortex (PFC) is critical for top-down modulatory processes, and despite previous studies adopting repetitive transcranial magnetic stimulation (rTMS) over this region provided encouraging results in enhancing extinction, no studies have hitherto explored the effects of stimulating the medial anterior PFC (aPFC, encompassing the Brodmann area 10) on threat memory and generalization. Here we showed that rTMS over the aPFC applied before threat memory retrieval immediately decreases implicit reactions to learned and novel stimuli in humans. These effects enduringly persisted 1 week later in the absence of rTMS. No effects were detected on explicit recognition. Critically, rTMS over the aPFC resulted in a more pronounced reduction of defensive responses compared to rTMS targeting the dorsolateral PFC. These findings reveal a previously unexplored prefrontal region, the modulation of which can efficiently and durably inhibit implicit reactions to learned threats. This represents a significant advancement toward the long-term deactivation of exaggerated responses to threats.

    1. Neuroscience
    Antonella Pomè, Eckart Zimmermann
    Research Article

    Autism spectrum disorder (ASD) presents a range of challenges, including heightened sensory sensitivities. Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms, which predict the sensory outcomes of self-generated actions, such as eye movements. Efference copies play a vital role in maintaining visual and motor stability. Disrupted efference copies hinder precise predictions, leading to increased reliance on actual feedback and potential distortions in perceptions across eye movements. In our first experiment, we tested how well healthy individuals with varying levels of autistic traits updated their mental map after making eye movements. We found that those with more autistic traits had difficulty using information from their eye movements to update the spatial representation of their mental map, resulting in significant errors in object localization. In the second experiment, we looked at how participants perceived an object displacement after making eye movements. Using a trans-saccadic spatial updating task, we found that those with higher autism scores exhibited a greater bias, indicating under-compensation of eye movements and a failure to maintain spatial stability during saccades. Overall, our study underscores efference copy’s vital role in visuo-motor stability, aligning with Bayesian theories of autism, potentially informing interventions for improved action–perception integration in autism.