Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period

  1. Qiang Qiu
  2. Yunming Wu
  3. Limei Ma
  4. Wenjing Xu
  5. Max Hills Jnr
  6. Vivekanandan Ramalingam
  7. C Ron Yu  Is a corresponding author
  1. Stowers Institute for Medical Research, United States

Abstract

Animals possess an inborn ability to recognize certain odors to avoid predators, seek food and find mates. Innate odor preference has been thought to be genetically hardwired. Here we report that acquisition of innate odor recognition requires spontaneous neural activity and is influenced by sensory experience during early postnatal development. Genetic silencing of mouse olfactory sensory neurons during the critical period has little impact on odor sensitivity, discrimination, and recognition later in life. However, it abolishes innate odor preference and alters the patterns of activation in brain centers. Moreover, exposure to an aversive odor during the critical period abolishes aversion in adulthood in an odor-specific manner. The loss of innate aversion is associated with broadened projection of OSNs. Thus, a delicate balance of neural activity is required during the critical period in establishing innate odor preference and ectopic projection is a convergent mechanism to alter innate odor valence.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE166457.All other data generated or analysed during this study will be available at https://www.stowers.org/research/publications/LIBPB-1613_2021.

The following data sets were generated

Article and author information

Author details

  1. Qiang Qiu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yunming Wu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Limei Ma

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenjing Xu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Max Hills Jnr

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vivekanandan Ramalingam

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. C Ron Yu

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    cry@stowers.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1555-8683

Funding

National Institutes of Health (R01DC008003)

  • C Ron Yu

National Institutes of Health (R01DC014701)

  • C Ron Yu

National Institutes of Health (R01DC016696)

  • C Ron Yu

Stowers Institute for Medical Research (1021)

  • C Ron Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen Liberles, Harvard Medical School, United States

Ethics

Animal experimentation: Experimental protocols were approved by the Institutional Animal Care and Use Committee at Stowers Institute (protocol 2019-102) and in compliance with the NIH Guide for Care and Use of Animals.

Version history

  1. Received: June 29, 2020
  2. Accepted: March 24, 2021
  3. Accepted Manuscript published: March 26, 2021 (version 1)
  4. Version of Record published: April 8, 2021 (version 2)

Copyright

© 2021, Qiu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,575
    views
  • 400
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiang Qiu
  2. Yunming Wu
  3. Limei Ma
  4. Wenjing Xu
  5. Max Hills Jnr
  6. Vivekanandan Ramalingam
  7. C Ron Yu
(2021)
Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period
eLife 10:e60546.
https://doi.org/10.7554/eLife.60546

Share this article

https://doi.org/10.7554/eLife.60546

Further reading

    1. Neuroscience
    Olivier Codol, Jonathan A Michaels ... Paul L Gribble
    Tools and Resources

    Artificial neural networks (ANNs) are a powerful class of computational models for unravelling neural mechanisms of brain function. However, for neural control of movement, they currently must be integrated with software simulating biomechanical effectors, leading to limiting impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effectors are not generally differentiable, constraining researchers to reinforcement learning algorithms despite the existence and potential biological relevance of faster training methods. To address these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of use, a high-level user-friendly application programming interface, and a modular architecture to allow for flexibility in model building. MotorNet requires no dependencies outside Python, making it easy to get started with. For instance, it allows training ANNs on typically used motor control models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. MotorNet is built on PyTorch and therefore can implement any network architecture that is possible using the PyTorch framework. Consequently, it will immediately benefit from advances in artificial intelligence through PyTorch updates. Finally, it is open source, enabling users to create and share their own improvements, such as new effector and network architectures or custom task designs. MotorNet’s focus on higher-order model and task design will alleviate overhead cost to initiate computational projects for new researchers by providing a standalone, ready-to-go framework, and speed up efforts of established computational teams by enabling a focus on concepts and ideas over implementation.

    1. Neuroscience
    Meike E van der Heijden, Amanda M Brown ... Roy V Sillitoe
    Research Article

    The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.