Task specialization across research careers
Abstract
Research careers are typically envisioned as a single path in which researchers start being one of a large number of researchers working under the guidance of one or more experienced scientists and, if they are successful, end with the individual leading their own research group and training future generations of scientists. Here we study the author contribution statements of published research papers in order to explore possible biases and disparities in career trajectories in science. We used Bayesian networks to train a prediction model based on a dataset of 70,694 publications from PLoS journals, which included 347,136 distinct authors and their associated contribution statements. This model was used to predict the contributions of 222,925 authors in 6,236,239 publications, and to apply a robust archetypal analysis to profile scientists across four career stages: junior, early-career, mid-career and late-career. All three of the archetypes we found - leader, specialized, and supporting - were encountered for early-career and mid-career researchers. Junior researchers displayed only two archetypes (specialized, and supporting), as did late-career researchers (leader and supporting). Scientists assigned to the leader and specialized archetypes tended to have longer careers than those assigned to the supporting archetype. We also observed consistent gender bias at all stages: the majority of male scientists belonged to the leader archetype, while the larger proportion of women belonged to the specialized archetype, especially for early-career and mid-career researchers.
Data availability
All data is openly accessible at http://doi.org/10.5281/zenodo.3891055
Article and author information
Author details
Funding
European Commission (707404)
- Nicolas Robinson-Garcia
South African DST-NRF Centre for Excellence in Scientometrics and Science, Technology and Innovation Policy
- Rodrigo Costas
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Peter Rodgers, eLife, United Kingdom
Publication history
- Received: July 1, 2020
- Accepted: October 23, 2020
- Accepted Manuscript published: October 28, 2020 (version 1)
- Version of Record published: November 6, 2020 (version 2)
Copyright
© 2020, Robinson-Garcia et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,507
- Page views
-
- 174
- Downloads
-
- 8
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
Mutations in the lever arm of β-cardiac myosin are a frequent cause of hypertrophic cardiomyopathy, a disease characterized by hypercontractility and eventual hypertrophy of the left ventricle. Here, we studied five such mutations: three in the pliant region of the lever arm (D778V, L781P, and S782N) and two in the light chain-binding region (A797T and F834L). We investigated their effects on both motor function and myosin subfragment 2 (S2) tail-based autoinhibition. The pliant region mutations had varying effects on the motor function of a myosin construct lacking the S2 tail: overall, D778V increased power output, L781P reduced power output, and S782N had little effect on power output, while all three reduced the external force sensitivity of the actin detachment rate. With a myosin containing the motor domain and the proximal S2 tail, the pliant region mutations also attenuated autoinhibition in the presence of filamentous actin but had no impact in the absence of actin. By contrast, the light chain-binding region mutations had little effect on motor activity but produced marked reductions in autoinhibition in both the presence and absence of actin. Thus, mutations in the lever arm of β-cardiac myosin have divergent allosteric effects on myosin function, depending on whether they are in the pliant or light chain-binding regions.
-
- Biochemistry and Chemical Biology
Chain-length specific subsets of diacylglycerol (DAG) lipids are proposed to regulate differential physiological responses ranging from signal transduction to modulation of the membrane properties. However, the mechanism or molecular players regulating the subsets of DAG species remains unknown. Here, we uncover the role of a conserved eukaryotic protein family, DISCO-interacting protein 2 (DIP2) as a homeostatic regulator of a chemically distinct subset of DAGs using yeast, fly and mouse models. Genetic and chemical screens along with lipidomics analysis in yeast reveal that DIP2 prevents the toxic accumulation of specific DAGs in the logarithmic growth phase, which otherwise leads to endoplasmic reticulum stress. We also show that the fatty acyl-AMP ligase-like domains of DIP2 are essential for the redirection of the flux of DAG subspecies to storage lipid, triacylglycerols. DIP2 is associated with vacuoles through mitochondria-vacuole contact sites and such modulation of selective DAG abundance by DIP2 is found to be crucial for optimal vacuole membrane fusion and consequently osmoadaptation in yeast. Thus, the study illuminates an unprecedented DAG metabolism route and provides new insights on how cell fine-tunes DAG subspecies for cellular homeostasis and environmental adaptation.