Structural basis of TRPC4 regulation by calmodulin and pharmacological agents

  1. Deivanayagabarathy Vinayagam
  2. Dennis Quentin
  3. Jing Yu-Strzelczyk
  4. Oleg Sitsel
  5. Felipe Merino
  6. Markus Stabrin
  7. Oliver Hofnagel
  8. Maolin Yu
  9. Mark W Ledeboer
  10. Georg Nagel
  11. Goran Malojcic
  12. Stefan Raunser  Is a corresponding author
  1. Max Planck Institute of Molecular Physiology, Germany
  2. Julius-Maximilians-Universität Würzburg, Germany
  3. Max Planck Institute for Molecular Physiology, Germany
  4. Goldfinch Bio Inc, United States

Abstract

Canonical transient receptor potential channels (TRPC) are involved in receptor-operated and/or store-operated Ca2+ signaling. Inhibition of TRPCs by small molecules was shown to be promising in treating renal diseases. In cells, the channels are regulated by calmodulin. Molecular details of both calmodulin and drug binding have remained elusive so far. Here we report structures of TRPC4 in complex with three pyridazinone-based inhibitors and calmodulin. The structures reveal that all the inhibitors bind to the same cavity of the voltage-sensing-like domain and allow us to describe how structural changes from the ligand binding site can be transmitted to the central ion-conducting pore of TRPC4. Calmodulin binds to the rib helix of TRPC4, which results in the ordering of a previously disordered region, fixing the channel in its closed conformation. This represents a novel calmodulin-induced regulatory mechanism of canonical TRP channels.

Data availability

The atomic coordinates and cryo-EM maps for TRPC4DR in complex with inhibitors, calmodulin and for TRPC4DR in LMNG are available at the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) databases, under the accession numbers PBD 7B0S and EMD-11970 (TRPC4-GFB8438), PBD 7B16 and EMD-11979 (TRPC4-GFB9289); PBD 7B05 and EMD-11957 (TRPC4-GFB8749); PBD 7B1G and EMD-11985 (TRPC4-Calmodulin) and PBD 7B0J and EMD-11968 (TRPC4-apo in LMNG).

The following data sets were generated

Article and author information

Author details

  1. Deivanayagabarathy Vinayagam

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  2. Dennis Quentin

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  3. Jing Yu-Strzelczyk

    Department of Neurophysiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
    Competing interests
    No competing interests declared.
  4. Oleg Sitsel

    Department of Structural Biochemistry, Max Planck Institute for Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4496-7489
  5. Felipe Merino

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4166-8747
  6. Markus Stabrin

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0191-6419
  7. Oliver Hofnagel

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  8. Maolin Yu

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Maolin Yu, The author is or was a shareholder of Goldfinch Bio..
  9. Mark W Ledeboer

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Mark W Ledeboer, The author is or was a shareholder of Goldfinch Bio..
  10. Georg Nagel

    Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
    Competing interests
    No competing interests declared.
  11. Goran Malojcic

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Goran Malojcic, The author is or was a shareholder of Goldfinch Bio..
  12. Stefan Raunser

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    stefan.raunser@mpi-dortmund.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9373-3016

Funding

Max-Planck-Gesellschaft

  • Stefan Raunser

Deutsche Forschungsgemeinschaft (TR240)

  • Georg Nagel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Vinayagam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,962
    views
  • 479
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Deivanayagabarathy Vinayagam
  2. Dennis Quentin
  3. Jing Yu-Strzelczyk
  4. Oleg Sitsel
  5. Felipe Merino
  6. Markus Stabrin
  7. Oliver Hofnagel
  8. Maolin Yu
  9. Mark W Ledeboer
  10. Georg Nagel
  11. Goran Malojcic
  12. Stefan Raunser
(2020)
Structural basis of TRPC4 regulation by calmodulin and pharmacological agents
eLife 9:e60603.
https://doi.org/10.7554/eLife.60603

Share this article

https://doi.org/10.7554/eLife.60603

Further reading

    1. Structural Biology and Molecular Biophysics
    Gabriel E Jara, Francesco Pontiggia ... Dorothee Kern
    Research Article

    Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.