Structural basis of TRPC4 regulation by calmodulin and pharmacological agents

  1. Deivanayagabarathy Vinayagam
  2. Dennis Quentin
  3. Jing Yu-Strzelczyk
  4. Oleg Sitsel
  5. Felipe Merino
  6. Markus Stabrin
  7. Oliver Hofnagel
  8. Maolin Yu
  9. Mark W Ledeboer
  10. Georg Nagel
  11. Goran Malojcic
  12. Stefan Raunser  Is a corresponding author
  1. Max Planck Institute of Molecular Physiology, Germany
  2. Julius-Maximilians-Universität Würzburg, Germany
  3. Max Planck Institute for Molecular Physiology, Germany
  4. Goldfinch Bio Inc, United States

Abstract

Canonical transient receptor potential channels (TRPC) are involved in receptor-operated and/or store-operated Ca2+ signaling. Inhibition of TRPCs by small molecules was shown to be promising in treating renal diseases. In cells, the channels are regulated by calmodulin. Molecular details of both calmodulin and drug binding have remained elusive so far. Here we report structures of TRPC4 in complex with three pyridazinone-based inhibitors and calmodulin. The structures reveal that all the inhibitors bind to the same cavity of the voltage-sensing-like domain and allow us to describe how structural changes from the ligand binding site can be transmitted to the central ion-conducting pore of TRPC4. Calmodulin binds to the rib helix of TRPC4, which results in the ordering of a previously disordered region, fixing the channel in its closed conformation. This represents a novel calmodulin-induced regulatory mechanism of canonical TRP channels.

Data availability

The atomic coordinates and cryo-EM maps for TRPC4DR in complex with inhibitors, calmodulin and for TRPC4DR in LMNG are available at the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) databases, under the accession numbers PBD 7B0S and EMD-11970 (TRPC4-GFB8438), PBD 7B16 and EMD-11979 (TRPC4-GFB9289); PBD 7B05 and EMD-11957 (TRPC4-GFB8749); PBD 7B1G and EMD-11985 (TRPC4-Calmodulin) and PBD 7B0J and EMD-11968 (TRPC4-apo in LMNG).

The following data sets were generated

Article and author information

Author details

  1. Deivanayagabarathy Vinayagam

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  2. Dennis Quentin

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  3. Jing Yu-Strzelczyk

    Department of Neurophysiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
    Competing interests
    No competing interests declared.
  4. Oleg Sitsel

    Department of Structural Biochemistry, Max Planck Institute for Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4496-7489
  5. Felipe Merino

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4166-8747
  6. Markus Stabrin

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0191-6419
  7. Oliver Hofnagel

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  8. Maolin Yu

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Maolin Yu, The author is or was a shareholder of Goldfinch Bio..
  9. Mark W Ledeboer

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Mark W Ledeboer, The author is or was a shareholder of Goldfinch Bio..
  10. Georg Nagel

    Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
    Competing interests
    No competing interests declared.
  11. Goran Malojcic

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Goran Malojcic, The author is or was a shareholder of Goldfinch Bio..
  12. Stefan Raunser

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    stefan.raunser@mpi-dortmund.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9373-3016

Funding

Max-Planck-Gesellschaft

  • Stefan Raunser

Deutsche Forschungsgemeinschaft (TR240)

  • Georg Nagel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Vinayagam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,797
    views
  • 458
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Deivanayagabarathy Vinayagam
  2. Dennis Quentin
  3. Jing Yu-Strzelczyk
  4. Oleg Sitsel
  5. Felipe Merino
  6. Markus Stabrin
  7. Oliver Hofnagel
  8. Maolin Yu
  9. Mark W Ledeboer
  10. Georg Nagel
  11. Goran Malojcic
  12. Stefan Raunser
(2020)
Structural basis of TRPC4 regulation by calmodulin and pharmacological agents
eLife 9:e60603.
https://doi.org/10.7554/eLife.60603

Share this article

https://doi.org/10.7554/eLife.60603

Further reading

    1. Structural Biology and Molecular Biophysics
    Bradley P Clarke, Alexia E Angelos ... Yi Ren
    Research Article

    In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5′ end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5′ end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.

    1. Structural Biology and Molecular Biophysics
    Julia Belyaeva, Matthias Elgeti
    Review Article

    Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure–function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.