Structural basis of TRPC4 regulation by calmodulin and pharmacological agents

  1. Deivanayagabarathy Vinayagam
  2. Dennis Quentin
  3. Jing Yu-Strzelczyk
  4. Oleg Sitsel
  5. Felipe Merino
  6. Markus Stabrin
  7. Oliver Hofnagel
  8. Maolin Yu
  9. Mark W Ledeboer
  10. Georg Nagel
  11. Goran Malojcic
  12. Stefan Raunser  Is a corresponding author
  1. Max Planck Institute of Molecular Physiology, Germany
  2. Julius-Maximilians-Universität Würzburg, Germany
  3. Max Planck Institute for Molecular Physiology, Germany
  4. Goldfinch Bio Inc, United States

Abstract

Canonical transient receptor potential channels (TRPC) are involved in receptor-operated and/or store-operated Ca2+ signaling. Inhibition of TRPCs by small molecules was shown to be promising in treating renal diseases. In cells, the channels are regulated by calmodulin. Molecular details of both calmodulin and drug binding have remained elusive so far. Here we report structures of TRPC4 in complex with three pyridazinone-based inhibitors and calmodulin. The structures reveal that all the inhibitors bind to the same cavity of the voltage-sensing-like domain and allow us to describe how structural changes from the ligand binding site can be transmitted to the central ion-conducting pore of TRPC4. Calmodulin binds to the rib helix of TRPC4, which results in the ordering of a previously disordered region, fixing the channel in its closed conformation. This represents a novel calmodulin-induced regulatory mechanism of canonical TRP channels.

Data availability

The atomic coordinates and cryo-EM maps for TRPC4DR in complex with inhibitors, calmodulin and for TRPC4DR in LMNG are available at the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) databases, under the accession numbers PBD 7B0S and EMD-11970 (TRPC4-GFB8438), PBD 7B16 and EMD-11979 (TRPC4-GFB9289); PBD 7B05 and EMD-11957 (TRPC4-GFB8749); PBD 7B1G and EMD-11985 (TRPC4-Calmodulin) and PBD 7B0J and EMD-11968 (TRPC4-apo in LMNG).

The following data sets were generated

Article and author information

Author details

  1. Deivanayagabarathy Vinayagam

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  2. Dennis Quentin

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  3. Jing Yu-Strzelczyk

    Department of Neurophysiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
    Competing interests
    No competing interests declared.
  4. Oleg Sitsel

    Department of Structural Biochemistry, Max Planck Institute for Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4496-7489
  5. Felipe Merino

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4166-8747
  6. Markus Stabrin

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0191-6419
  7. Oliver Hofnagel

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  8. Maolin Yu

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Maolin Yu, The author is or was a shareholder of Goldfinch Bio..
  9. Mark W Ledeboer

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Mark W Ledeboer, The author is or was a shareholder of Goldfinch Bio..
  10. Georg Nagel

    Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
    Competing interests
    No competing interests declared.
  11. Goran Malojcic

    Research Department, Goldfinch Bio Inc, Boston, United States
    Competing interests
    Goran Malojcic, The author is or was a shareholder of Goldfinch Bio..
  12. Stefan Raunser

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    stefan.raunser@mpi-dortmund.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9373-3016

Funding

Max-Planck-Gesellschaft

  • Stefan Raunser

Deutsche Forschungsgemeinschaft (TR240)

  • Georg Nagel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Version history

  1. Received: July 1, 2020
  2. Accepted: November 23, 2020
  3. Accepted Manuscript published: November 25, 2020 (version 1)
  4. Version of Record published: December 14, 2020 (version 2)

Copyright

© 2020, Vinayagam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,685
    views
  • 446
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Deivanayagabarathy Vinayagam
  2. Dennis Quentin
  3. Jing Yu-Strzelczyk
  4. Oleg Sitsel
  5. Felipe Merino
  6. Markus Stabrin
  7. Oliver Hofnagel
  8. Maolin Yu
  9. Mark W Ledeboer
  10. Georg Nagel
  11. Goran Malojcic
  12. Stefan Raunser
(2020)
Structural basis of TRPC4 regulation by calmodulin and pharmacological agents
eLife 9:e60603.
https://doi.org/10.7554/eLife.60603

Share this article

https://doi.org/10.7554/eLife.60603

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.