HSPCs display within-family homogeneity in differentiation and proliferation despite population heterogeneity

  1. Tamar Tak
  2. Giulio Prevedello
  3. Gaël Simon
  4. Noémie Paillon
  5. Camélia Benlabiod
  6. Caroline Marty
  7. Isabelle Plo
  8. Ken R Duffy
  9. Leïla Perié  Is a corresponding author
  1. Institut Curie, France
  2. INSERM, Gustave Roussy, France
  3. Institut Gustave Roussy; INSERM U1170, France
  4. Maynooth University, Ireland

Abstract

High-throughput single cell methods have uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs), but how much instruction is inherited by offspring from their heterogeneous ancestors remains unanswered. Using a method that enables simultaneous determination of common ancestor, division number, and differentiation status of a large collection of single cells, our data revealed that murine cells that derived from a common ancestor had significant similarities in their division progression and differentiation outcomes. Although each family diversifies, the overall collection of cell types observed is composed of homogeneous families. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell-surface markers. Our analyses demonstrate that fate decision by cells are largely inherited from ancestor cells, indicating the importance of common ancestor effects. These results may have ramifications for bone marrow transplantation and leukemia, where substantial heterogeneity in HSPC behavior is observed.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data has been provided for Figures 1-4 in supplemental File 1.

Article and author information

Author details

  1. Tamar Tak

    UMR168 Physico-chimie, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5959-7927
  2. Giulio Prevedello

    CNRS UMR 3348, Institut Curie, Orsay, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9857-2351
  3. Gaël Simon

    UMR168 Physico-chimie, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Noémie Paillon

    UMR168 Physico-chimie, Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6848-3016
  5. Camélia Benlabiod

    UMR1287, INSERM, Gustave Roussy, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline Marty

    UMR1287, INSERM, Gustave Roussy, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Isabelle Plo

    INSERM U1170, Institut Gustave Roussy; INSERM U1170, VILLEJUIF, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Ken R Duffy

    Hamilton Institute, Maynooth University, Co Kildare, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  9. Leïla Perié

    UMR168 Physico-chimie, Institut Curie, Paris, France
    For correspondence
    leila.perie@curie.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0798-4498

Funding

Bettencourt-Schue (ATIP-Avenir)

  • Leïla Perié

Labex CelTisPhyBio (ANR-10-LBX-0038)

  • Leïla Perié

Idex (Paris-Sciece-Lettres Program ANR-10-IDEX-0001-02 PSL)

  • Leïla Perié

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Utpal Banerjee, University of California, Los Angeles, United States

Ethics

Animal experimentation: All the experimental procedures were approved by the local ethics committee (Comité d'Ethique en expérimentation animale de l'Institut Curie) under approval number DAP 2016 006.

Version history

  1. Received: July 1, 2020
  2. Accepted: May 17, 2021
  3. Accepted Manuscript published: May 18, 2021 (version 1)
  4. Version of Record published: June 3, 2021 (version 2)

Copyright

© 2021, Tak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,466
    Page views
  • 205
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tamar Tak
  2. Giulio Prevedello
  3. Gaël Simon
  4. Noémie Paillon
  5. Camélia Benlabiod
  6. Caroline Marty
  7. Isabelle Plo
  8. Ken R Duffy
  9. Leïla Perié
(2021)
HSPCs display within-family homogeneity in differentiation and proliferation despite population heterogeneity
eLife 10:e60624.
https://doi.org/10.7554/eLife.60624

Share this article

https://doi.org/10.7554/eLife.60624

Further reading

    1. Stem Cells and Regenerative Medicine
    Matias I Autio, Efthymios Motakis ... Roger SY Foo
    Research Article Updated

    Selection of the target site is an inherent question for any project aiming for directed transgene integration. Genomic safe harbour (GSH) loci have been proposed as safe sites in the human genome for transgene integration. Although several sites have been characterised for transgene integration in the literature, most of these do not meet criteria set out for a GSH and the limited set that do have not been characterised extensively. Here, we conducted a computational analysis using publicly available data to identify 25 unique putative GSH loci that reside in active chromosomal compartments. We validated stable transgene expression and minimal disruption of the native transcriptome in three GSH sites in vitro using human embryonic stem cells (hESCs) and their differentiated progeny. Furthermore, for easy targeted transgene expression, we have engineered constitutive landing pad expression constructs into the three validated GSH in hESCs.

    1. Immunology and Inflammation
    2. Stem Cells and Regenerative Medicine
    Jesus A Castor-Macias, Jacqueline A Larouche ... Carlos A Aguilar
    Research Article Updated

    The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.