A calcineurin-mediated scaling mechanism that controls a K+-leak channel to regulate morphogen and growth factor transcription

  1. Chao Yi
  2. Tim WGM Spitters
  3. Ezz Al-Din Ahmed Al-Far
  4. Sen Wang
  5. TianLong Xiong
  6. Simian Cai
  7. Xin Yan
  8. Kaomei Guan
  9. Michael Wagner
  10. Ali El-Armouche
  11. Christopher L Antos  Is a corresponding author
  1. ShanghaiTech University, China
  2. Technische Universitaet Dresden, Germany
  3. Technische Universität Dresden, Germany

Abstract

The increase in activity of the two-pore potassium-leak channel Kcnk5b maintains allometric juvenile growth of adult zebrafish appendages. However, it remains unknown how this channel maintains allometric growth and how its bioelectric activity is regulated to scale these anatomical structures. We show the activation of Kcnk5b is sufficient to activate several genes that are part of important development programs. We provide in vivo transplantation evidence that the activation of gene transcription is cell autonomous. We also show that Kcnk5b will induce the expression of different subsets of the tested developmental genes in different cultured mammalian cell lines, which may explain how one electrophysiological stimulus can coordinately regulate the allometric growth of diverse populations of cells in the fin that use different developmental signals. We also provide evidence that the post-translational modification of serine 345 in Kcnk5b by calcineurin regulates channel activity to scale the fin. Thus, we show how an endogenous bioelectric mechanism can be regulated to promote coordinated developmental signaling to generate and scale a vertebrate appendage.

Data availability

All data generated are included in the manscript and files

Article and author information

Author details

  1. Chao Yi

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tim WGM Spitters

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ezz Al-Din Ahmed Al-Far

    Institut fuer Pharmakologie und Toxikologie, Technische Universitaet Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sen Wang

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. TianLong Xiong

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Simian Cai

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xin Yan

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaomei Guan

    Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Wagner

    Department for Rhythmology, Technische Universitaet Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ali El-Armouche

    Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher L Antos

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    For correspondence
    clantos@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8881-8568

Funding

Deutsche Forschungsgemeinschaft (AN 797/4-1)

  • Christopher L Antos

ShanghaiTech University

  • Christopher L Antos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lilianna Solnica-Krezel, Washington University School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with guidelines for the care and use of laboratory animals for the European Union, Germany,Landesdirektion Sachsen, the Technische Universität Dresden, China and ShanghaiTech University. The protocols were approved by the Landesdirektion Sachsen (Permit number: DD24.1-5131/394/79) and the Shanghaitech Ethical Use of Aminals Committee (20200903003) All procedures using zebrafish were performed under Tricane anesthesia, and every effort was made to minimize discomfort and suffering.

Version history

  1. Received: July 3, 2020
  2. Accepted: April 7, 2021
  3. Accepted Manuscript published: April 8, 2021 (version 1)
  4. Version of Record published: May 10, 2021 (version 2)

Copyright

© 2021, Yi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,613
    views
  • 258
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chao Yi
  2. Tim WGM Spitters
  3. Ezz Al-Din Ahmed Al-Far
  4. Sen Wang
  5. TianLong Xiong
  6. Simian Cai
  7. Xin Yan
  8. Kaomei Guan
  9. Michael Wagner
  10. Ali El-Armouche
  11. Christopher L Antos
(2021)
A calcineurin-mediated scaling mechanism that controls a K+-leak channel to regulate morphogen and growth factor transcription
eLife 10:e60691.
https://doi.org/10.7554/eLife.60691

Share this article

https://doi.org/10.7554/eLife.60691

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.