A calcineurin-mediated scaling mechanism that controls a K+-leak channel to regulate morphogen and growth factor transcription

  1. Chao Yi
  2. Tim WGM Spitters
  3. Ezz Al-Din Ahmed Al-Far
  4. Sen Wang
  5. TianLong Xiong
  6. Simian Cai
  7. Xin Yan
  8. Kaomei Guan
  9. Michael Wagner
  10. Ali El-Armouche
  11. Christopher L Antos  Is a corresponding author
  1. ShanghaiTech University, China
  2. Technische Universitaet Dresden, Germany
  3. Technische Universität Dresden, Germany

Abstract

The increase in activity of the two-pore potassium-leak channel Kcnk5b maintains allometric juvenile growth of adult zebrafish appendages. However, it remains unknown how this channel maintains allometric growth and how its bioelectric activity is regulated to scale these anatomical structures. We show the activation of Kcnk5b is sufficient to activate several genes that are part of important development programs. We provide in vivo transplantation evidence that the activation of gene transcription is cell autonomous. We also show that Kcnk5b will induce the expression of different subsets of the tested developmental genes in different cultured mammalian cell lines, which may explain how one electrophysiological stimulus can coordinately regulate the allometric growth of diverse populations of cells in the fin that use different developmental signals. We also provide evidence that the post-translational modification of serine 345 in Kcnk5b by calcineurin regulates channel activity to scale the fin. Thus, we show how an endogenous bioelectric mechanism can be regulated to promote coordinated developmental signaling to generate and scale a vertebrate appendage.

Data availability

All data generated are included in the manscript and files

Article and author information

Author details

  1. Chao Yi

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tim WGM Spitters

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ezz Al-Din Ahmed Al-Far

    Institut fuer Pharmakologie und Toxikologie, Technische Universitaet Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sen Wang

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. TianLong Xiong

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Simian Cai

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xin Yan

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaomei Guan

    Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Wagner

    Department for Rhythmology, Technische Universitaet Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ali El-Armouche

    Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher L Antos

    School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
    For correspondence
    clantos@shanghaitech.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8881-8568

Funding

Deutsche Forschungsgemeinschaft (AN 797/4-1)

  • Christopher L Antos

ShanghaiTech University

  • Christopher L Antos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with guidelines for the care and use of laboratory animals for the European Union, Germany,Landesdirektion Sachsen, the Technische Universität Dresden, China and ShanghaiTech University. The protocols were approved by the Landesdirektion Sachsen (Permit number: DD24.1-5131/394/79) and the Shanghaitech Ethical Use of Aminals Committee (20200903003) All procedures using zebrafish were performed under Tricane anesthesia, and every effort was made to minimize discomfort and suffering.

Copyright

© 2021, Yi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,670
    views
  • 272
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chao Yi
  2. Tim WGM Spitters
  3. Ezz Al-Din Ahmed Al-Far
  4. Sen Wang
  5. TianLong Xiong
  6. Simian Cai
  7. Xin Yan
  8. Kaomei Guan
  9. Michael Wagner
  10. Ali El-Armouche
  11. Christopher L Antos
(2021)
A calcineurin-mediated scaling mechanism that controls a K+-leak channel to regulate morphogen and growth factor transcription
eLife 10:e60691.
https://doi.org/10.7554/eLife.60691

Share this article

https://doi.org/10.7554/eLife.60691

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Roger Huerlimann, Natacha Roux ... Timothy Ravasi
    Research Article

    Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.