Generation of stress fibers through myosin-driven re-organization of the actin cortex

Abstract

Contractile actomyosin bundles, stress fibers, govern key cellular processes including migration, adhesion, and mechanosensing. Stress fibers are thus critical for developmental morphogenesis. The most prominent actomyosin bundles, ventral stress fibers, generated through coalescence of pre-existing stress fiber precursors. However, whether stress fibers can assemble through other mechanisms has remained elusive. We report that stress fibers can also form without requirement of pre-existing actomyosin bundles. These structures, which we named cortical stress fibers, are embedded in the cell cortex and assemble preferentially underneath the nucleus. In this process, non-muscle myosin II pulses orchestrate the reorganization of cortical actin meshwork into regular bundles, which promote reinforcement of nascent focal adhesions, and subsequent stabilization of the cortical stress fibers. These results identify a new mechanism by which stress fibers can be generated de novo from the actin cortex, and establish role for stochastic myosin pulses in the assembly of functional actomyosin bundles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files for pulse quantification are provided in GitHub (https://github.com/UH-LMU/lmu-users/tree/master/jaakko/NMIIA_pulses).

Article and author information

Author details

  1. Jaakko I Lehtimäki

    Institute of Biotechnology, University of Helsinki, Helsinki, Finland
    For correspondence
    jaakko.lehtimaki@helsinki.fi
    Competing interests
    No competing interests declared.
  2. Eeva Kaisa Rajakylä

    Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
    For correspondence
    kaisa.rajakyla@helsinki.fi
    Competing interests
    No competing interests declared.
  3. Sari Tojkander

    Institute of Biotechnology, University of Helsinki, Helsinki, Finland
    For correspondence
    sari.tojkander@helsinki.fi
    Competing interests
    No competing interests declared.
  4. Pekka Lappalainen

    Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
    For correspondence
    pekka.lappalainen@helsinki.fi
    Competing interests
    Pekka Lappalainen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6227-0354

Funding

Sigrid Juselius Foundation (4708344)

  • Pekka Lappalainen

Aatos Erkko Foundation (4704407)

  • Pekka Lappalainen

Academy of Finland (294174)

  • Sari Tojkander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Lehtimäki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,313
    views
  • 935
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jaakko I Lehtimäki
  2. Eeva Kaisa Rajakylä
  3. Sari Tojkander
  4. Pekka Lappalainen
(2021)
Generation of stress fibers through myosin-driven re-organization of the actin cortex
eLife 10:e60710.
https://doi.org/10.7554/eLife.60710

Share this article

https://doi.org/10.7554/eLife.60710

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.