Identification of ligand-specific G-protein coupled receptor states and prediction of downstream efficacy via data-driven modeling

  1. Oliver Fleetwood
  2. Jens Carlsson
  3. Lucie Delemotte  Is a corresponding author
  1. KTH Royal Institute of Technology, Sweden
  2. Uppsala University, Sweden

Abstract

Ligand binding stabilizes different G protein-coupled receptor states via a complex allosteric process that is not completely understood. Here, we have derived free energy landscapes describing activation of the β2 adrenergic receptor bound to ligands with different efficacy profiles using enhanced sampling molecular dynamics (MD) simulations. These reveal shifts towards active-like states at the G protein binding site for receptors bound to partial and full agonists and that the ligands modulate the conformational ensemble of the receptor by tuning protein microswitches. We indeed find an excellent correlation between the conformation of the microswitches close to the ligand binding site and in the transmembrane region and experimentally reported cAMP signaling responses. Dimensionality reduction further reveals the similarity between the unique conformational states induced by different ligands and examining the output of classifiers highlights two distant hotspots governing agonism on transmembrane helices 5 and 7.

Data availability

The data necessary to reproduce the findings presented in this paper can be found on OSF (DOI 10.17605/OSF.IO/B5RAV). The code used to run and analyze simulations has been deposited on GitHub (https://github.com/delemottelab/demystifying, https://github.com/delemottelab/gpcr-string-method-2019 and https://github.com/delemottelab/state-sampling).

The following previously published data sets were used

Article and author information

Author details

  1. Oliver Fleetwood

    Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4277-2661
  2. Jens Carlsson

    Uppsala University, Uppsala, Sweden
    Competing interests
    No competing interests declared.
  3. Lucie Delemotte

    Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
    For correspondence
    lucie.delemotte@scilifelab.se
    Competing interests
    Lucie Delemotte, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0828-3899

Funding

Göran Gustafssons Stiftelse

  • Jens Carlsson
  • Lucie Delemotte

Science for Life Laboratory

  • Jens Carlsson
  • Lucie Delemotte

Vetenskapsrådet (2017-4676)

  • Jens Carlsson

Swedish strategic research program eSSENCE

  • Jens Carlsson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Fleetwood et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,788
    views
  • 613
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oliver Fleetwood
  2. Jens Carlsson
  3. Lucie Delemotte
(2021)
Identification of ligand-specific G-protein coupled receptor states and prediction of downstream efficacy via data-driven modeling
eLife 10:e60715.
https://doi.org/10.7554/eLife.60715

Share this article

https://doi.org/10.7554/eLife.60715

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.