1. Cell Biology
Download icon

CB1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance

  1. Adi Drori
  2. Asaad Gammal
  3. Shahar Azar
  4. Liad Hinden
  5. Rivka Hadar
  6. Daniel Wesley
  7. Alina Nemirovski
  8. Gergő Szanda
  9. Maayan Salton
  10. Boaz Tirosh
  11. Joseph Tam  Is a corresponding author
  1. The Hebrew University of Jerusalem, Israel
  2. National Institute on Alcohol Abuse & Alcoholism, United States
  3. Semmelweis University, Hungary
  4. Hebrew University of Jerusalem, Israel
Research Article
  • Cited 0
  • Views 483
  • Annotations
Cite this article as: eLife 2020;9:e60771 doi: 10.7554/eLife.60771

Abstract

The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP.

Article and author information

Author details

  1. Adi Drori

    Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Asaad Gammal

    Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Shahar Azar

    Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Liad Hinden

    Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0307-4350
  5. Rivka Hadar

    Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Wesley

    Laboratory of Physiological Studies, National Institute on Alcohol Abuse & Alcoholism, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alina Nemirovski

    Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Gergő Szanda

    Department of Physiology, Semmelweis University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  9. Maayan Salton

    Biochemistry and molecular biology, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Boaz Tirosh

    The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8067-6577
  11. Joseph Tam

    Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    yossit@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0948-0093

Funding

Israel Science Foundation (617/14)

  • Joseph Tam

Israel Science Foundation (158/18)

  • Joseph Tam

The Obesity Society's Early Career Research Award

  • Joseph Tam

ERC-2015-StG grant (676841)

  • Joseph Tam

Hungarian National Research, Development, and Innovation Office (NKFI-6/FK_124038)

  • Gergő Szanda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the Institutional Animal Care and Use Committee of the Hebrew University of Jerusalem (AAALAC accreditation #1285; Ethic approval numbers MD-14-14008 & MD-19-15951). Animal studies are reported in compliance with the ARRIVE guidelines (Kilkenny et al., 2010), and are based on the rule of the replacement, refinement, or reduction. All the animals used in this study were housed under specific pathogen‐free (SPF) conditions, up to five per cage, in standard plastic cages with natural soft sawdust as bedding. The animals were maintained under controlled temperature of 22-24{degree sign}C, humidity at 55 {plus minus} 5%, and alternating 12-hour light/dark cycles (lights were on between 7:00 and 19:00 hr), and provided with food and water ad libitum.

Reviewing Editor

  1. Anna Mae Diehl, Duke University School of Medicine, United States

Publication history

  1. Received: July 6, 2020
  2. Accepted: November 17, 2020
  3. Accepted Manuscript published: November 19, 2020 (version 1)
  4. Version of Record published: December 10, 2020 (version 2)

Copyright

© 2020, Drori et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 483
    Page views
  • 81
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Madhuja Samaddar et al.
    Research Article

    Somatic cells age and die, but the germ-cell lineage is immortal. In Caenorhabditis elegans, germline immortality involves proteostasis renewal at the beginning of each new generation, when oocyte maturation signals from sperm trigger the clearance of carbonylated proteins and protein aggregates. Here, we explore the cell biology of this proteostasis renewal in the context of a whole-genome RNAi screen. Oocyte maturation signals are known to trigger protein-aggregate removal via lysosome acidification. Our findings suggest that lysosomes are acidified as a consequence of changes in endoplasmic reticulum activity that permit assembly of the lysosomal V-ATPase, which in turn allows lysosomes to clear the aggregates via microautophagy. We define two functions for mitochondria, both of which appear to be independent of ATP generation. Many genes from the screen also regulate lysosome acidification and age-dependent protein aggregation in the soma, suggesting a fundamental mechanistic link between proteostasis renewal in the germline and somatic longevity.

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Deniz Cizmeci et al.
    Research Article

    A minor subset of individuals infected with HIV-1 develop antibody neutralization breadth during the natural course of the infection, often linked to chronic, high-level viremia. Despite significant efforts, vaccination strategies have been unable to induce similar neutralization breadth and the mechanisms underlying neutralizing antibody induction remain largely elusive. Broadly neutralizing antibody responses can also be found in individuals who control HIV to low and even undetectable plasma levels in the absence of antiretroviral therapy, suggesting that high antigen exposure is not a strict requirement for neutralization breadth. We therefore performed an analysis of paired heavy and light chain B-cell receptor (BCR) repertoires in 12,591 HIV-1 envelope-specific single memory B-cells to determine alterations in the BCR immunoglobulin gene repertoire and B-cell clonal expansions that associate with neutralizing antibody breadth in 22 HIV controllers. We found that the frequency of genomic mutations in IGHV and IGLV was directly correlated with serum neutralization breadth. The repertoire of the most mutated antibodies was dominated by a small number of large clones with evolutionary signatures suggesting that these clones had reached peak affinity maturation. These data demonstrate that even in the setting of low plasma HIV antigenemia, similar to what a vaccine can potentially achieve, BCR selection for extended somatic hypermutation and clonal evolution can occur in some individuals suggesting that host-specific factors might be involved that could be targeted with future vaccine strategies.