Re-assessment of the involvement of Snord115 in the serotonin 2C receptor pathway in a genetically relevant mouse model

Abstract

SNORD115 has been proposed to promote the activity of serotonin (HTR2C) receptor via its ability to base-pair with its pre-mRNA and regulate alternative RNA splicing and/or A-to-I RNA editing. Because SNORD115 genes are deleted in most patients with the Prader-Willi syndrome (PWS), diminished HTR2C receptor activity could contribute to the impaired emotional response and/or compulsive overeating characteristic of this disease. In order to test this appealing but never demonstrated hypothesis in vivo, we created a CRISPR/Cas9-mediated Snord115 knockout mouse. Surprisingly, we uncovered only modest region-specific alterations in Htr2c RNA editing profiles while Htr2c alternative RNA splicing was unchanged. These subtle changes, whose functional relevance remains uncertain, were not accompanied by any discernible defects in anxio-depressive-like phenotypes. Energy balance and eating behaviour were also normal, even after exposure to high fat diet. Our study raises questions concerning the physiological role of SNORD115, notably its involvement in behavioural disturbance associated with PWS.

Data availability

RiboMeth-seq data are available on GEO under the accession number GSE145159Raw data (mRNAseq) are available on Sequence Read Archive (SRA) database under the accession number PRJNA608249.Raw data (A-to-I RNA editing) are available on Sequence Read Archive (SRA) database under the accession numbers PRJNA603261 and PRJNA603264. Scripts used for that analysis, detailed instructions and intermediary data have been deposited at https://github.com/HKeyHKey/Hebras_et_al_2020

The following data sets were generated

Article and author information

Author details

  1. Jade Hebras

    LBME, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Virginie Marty

    LBME, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean Personnaz

    I2MC-U1048, Inserm, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6447-780X
  4. Pascale Mercier

    IPBS-UMR5089, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolai Krogh

    Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Henrik Nielsen

    Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Marion Aguirrebengoa

    BigA facility, CBI, UPS, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Hervé Seitz

    IGH, CNRS, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8172-5393
  9. Jean-Phillipe Pradere

    I2MC-U1048, Inserm, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Bruno P Guiard

    CRCA, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Jérôme Cavaille

    LBME, CNRS, Toulouse, France
    For correspondence
    jerome.cavaille@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2833-6836

Funding

Fundation for Prader-Willi research

  • Jérôme Cavaille

Fondation pour la Recherche Médicale (DEQ20160334936)

  • Jérôme Cavaille

Agence Nationale de la Recherche (ANR-18-CE12-0008-01)

  • Jérôme Cavaille

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal procedures were approved by the University of Toulouse and CNRS Institutional Animal Care Committee (DAP2016061716367988 and DAP2018011214542827). The animal housing facility met CNRS standards

Copyright

© 2020, Hebras et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,515
    views
  • 199
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jade Hebras
  2. Virginie Marty
  3. Jean Personnaz
  4. Pascale Mercier
  5. Nicolai Krogh
  6. Henrik Nielsen
  7. Marion Aguirrebengoa
  8. Hervé Seitz
  9. Jean-Phillipe Pradere
  10. Bruno P Guiard
  11. Jérôme Cavaille
(2020)
Re-assessment of the involvement of Snord115 in the serotonin 2C receptor pathway in a genetically relevant mouse model
eLife 9:e60862.
https://doi.org/10.7554/eLife.60862

Share this article

https://doi.org/10.7554/eLife.60862

Further reading

    1. Chromosomes and Gene Expression
    Chileleko Siachisumo, Sara Luzzi ... David J Elliott
    Research Advance

    Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata's survival in macrophages and drug tolerance.