Antibody escape by polyomavirus capsid mutation facilitates neurovirulence

  1. Matthew D Lauver
  2. Daniel J Goetschius
  3. Colleen S Netherby-Winslow
  4. Katelyn N Ayers
  5. Ge Jin
  6. Daniel G Haas
  7. Elizabeth L Frost
  8. Sung Hyun Cho
  9. Carol Bator
  10. Stephanie M Bywaters
  11. Neil D Christensen
  12. Susan L Hafenstein
  13. Aron E Lukacher  Is a corresponding author
  1. Penn State College of Medicine, United States
  2. The Pennsylvania State University, United States
  3. University of Virginia, United States
  4. Huck Institutes of the Life Sciences, United States

Abstract

JCPyV polyomavirus, a member of the human virome, causes Progressive Multifocal Leukoencephalopathy (PML), an oft-fatal demyelinating brain disease in individuals receiving immunomodulatory therapies. Mutations in the major viral capsid protein, VP1, are common in JCPyV from PML patients (JCPyV-PML) but whether they confer neurovirulence or escape from virus-neutralizing antibody (nAb) in vivo is unknown. A mouse polyomavirus (MuPyV) with a sequence-equivalent JCPyV-PML VP1 mutation replicated poorly in the kidney, a major reservoir for JCPyV persistence, but retained the CNS infectivity, cell tropism, and neuropathology of the parental virus. This mutation rendered MuPyV resistant to a monoclonal Ab (mAb), whose specificity overlapped the endogenous anti-VP1 response. Using cryo EM and a custom sub-particle refinement approach, we resolved an MuPyV:Fab complex map to 3.2 Å resolution. The structure revealed the mechanism of mAb evasion. Our findings demonstrate convergence between nAb evasion and CNS neurovirulence in vivo by a frequent JCPyV-PML VP1 mutation.

Data availability

All maps and models are deposited at wwPDB and their accession numbers are provided in the Data and code availability section of our manuscript.Maps and coordinates (4 zip files) generated during this study are included in the manuscript and supporting files.Source data files have been provided for Figures 4 and 5 and for Supplemental Figure 4, and are available on GitHub with the URL provided in the Data and code availability section.

The following data sets were generated

Article and author information

Author details

  1. Matthew D Lauver

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel J Goetschius

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6052-7141
  3. Colleen S Netherby-Winslow

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katelyn N Ayers

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ge Jin

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel G Haas

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth L Frost

    Neuroscience, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sung Hyun Cho

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Carol Bator

    Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephanie M Bywaters

    Pathology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Neil D Christensen

    Pathology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Susan L Hafenstein

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Aron E Lukacher

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    For correspondence
    alukacher@pennstatehealth.psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7969-2841

Funding

National Institute of Neurological Disorders and Stroke (R01NS088367)

  • Aron E Lukacher

National Institute of Neurological Disorders and Stroke (R01NS092662)

  • Aron E Lukacher

National Institute of Allergy and Infectious Diseases (R01AI107121)

  • Susan L Hafenstein

National Institute of Neurological Disorders and Stroke (F32NS106730)

  • Colleen S Netherby-Winslow

National Institute of Neurological Disorders and Stroke (F31NS083336)

  • Elizabeth L Frost

National Cancer Institute (T32CA060395)

  • Matthew D Lauver

National Cancer Institute (T32CA60395)

  • Stephanie M Bywaters

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving mice were conducted with the approval of Institutional Animal Care and Use Committee (Protocol 47619) of The Pennsylvania State University College of Medicine in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The Pennsylvania State University College of Medicine Animal Resource Program is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC). The Pennsylvania State University College of Medicine has an Animal Welfare Assurance on file with the National Institutes of Health's Office of Laboratory Animal Welfare; the Assurance Number is A3045-01.

Copyright

© 2020, Lauver et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,713
    views
  • 326
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew D Lauver
  2. Daniel J Goetschius
  3. Colleen S Netherby-Winslow
  4. Katelyn N Ayers
  5. Ge Jin
  6. Daniel G Haas
  7. Elizabeth L Frost
  8. Sung Hyun Cho
  9. Carol Bator
  10. Stephanie M Bywaters
  11. Neil D Christensen
  12. Susan L Hafenstein
  13. Aron E Lukacher
(2020)
Antibody escape by polyomavirus capsid mutation facilitates neurovirulence
eLife 9:e61056.
https://doi.org/10.7554/eLife.61056

Share this article

https://doi.org/10.7554/eLife.61056

Further reading

    1. Immunology and Inflammation
    Eugenio Antonio Carrera Silva, Juliana Puyssegur, Andrea Emilse Errasti
    Review Article

    The gut biome, a complex ecosystem of micro- and macro-organisms, plays a crucial role in human health. A disruption in this evolutive balance, particularly during early life, can lead to immune dysregulation and inflammatory disorders. ‘Biome repletion’ has emerged as a potential therapeutic approach, introducing live microbes or helminth-derived products to restore immune balance. While helminth therapy has shown some promise, significant challenges remain in optimizing clinical trials. Factors such as patient genetics, disease status, helminth species, and the optimal timing and dosage of their products or metabolites must be carefully considered to train the immune system effectively. We aim to discuss how helminths and their products induce trained immunity as prospective to treat inflammatory and autoimmune diseases. The molecular repertoire of helminth excretory/secretory products (ESPs), which includes proteins, peptides, lipids, and RNA-carrying extracellular vesicles (EVs), underscores their potential to modulate innate immune cells and hematopoietic stem cell precursors. Mimicking natural delivery mechanisms like synthetic exosomes could revolutionize EV-based therapies and optimizing production and delivery of ESP will be crucial for their translation into clinical applications. By deciphering and harnessing helminth-derived products’ diverse modes of action, we can unleash their full therapeutic potential and pave the way for innovative treatments.

    1. Immunology and Inflammation
    Graham L Barlow, Christian M Schürch ... Paul L Bollyky
    Research Article

    In autoimmune type 1 diabetes (T1D), immune cells infiltrate and destroy the islets of Langerhans — islands of endocrine tissue dispersed throughout the pancreas. However, the contribution of cellular programs outside islets to insulitis is unclear. Here, using CO-Detection by indEXing (CODEX) tissue imaging and cadaveric pancreas samples, we simultaneously examine islet and extra-islet inflammation in human T1D. We identify four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. We further find that the extra-islet space of lobules with extensive islet-infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. Finally, we identify lymphoid structures away from islets enriched in CD45RA+ T cells — a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.