Antibody escape by polyomavirus capsid mutation facilitates neurovirulence

  1. Matthew D Lauver
  2. Daniel J Goetschius
  3. Colleen S Netherby-Winslow
  4. Katelyn N Ayers
  5. Ge Jin
  6. Daniel G Haas
  7. Elizabeth L Frost
  8. Sung Hyun Cho
  9. Carol Bator
  10. Stephanie M Bywaters
  11. Neil D Christensen
  12. Susan L Hafenstein
  13. Aron E Lukacher  Is a corresponding author
  1. Penn State College of Medicine, United States
  2. The Pennsylvania State University, United States
  3. University of Virginia, United States
  4. Huck Institutes of the Life Sciences, United States

Abstract

JCPyV polyomavirus, a member of the human virome, causes Progressive Multifocal Leukoencephalopathy (PML), an oft-fatal demyelinating brain disease in individuals receiving immunomodulatory therapies. Mutations in the major viral capsid protein, VP1, are common in JCPyV from PML patients (JCPyV-PML) but whether they confer neurovirulence or escape from virus-neutralizing antibody (nAb) in vivo is unknown. A mouse polyomavirus (MuPyV) with a sequence-equivalent JCPyV-PML VP1 mutation replicated poorly in the kidney, a major reservoir for JCPyV persistence, but retained the CNS infectivity, cell tropism, and neuropathology of the parental virus. This mutation rendered MuPyV resistant to a monoclonal Ab (mAb), whose specificity overlapped the endogenous anti-VP1 response. Using cryo EM and a custom sub-particle refinement approach, we resolved an MuPyV:Fab complex map to 3.2 Å resolution. The structure revealed the mechanism of mAb evasion. Our findings demonstrate convergence between nAb evasion and CNS neurovirulence in vivo by a frequent JCPyV-PML VP1 mutation.

Data availability

All maps and models are deposited at wwPDB and their accession numbers are provided in the Data and code availability section of our manuscript.Maps and coordinates (4 zip files) generated during this study are included in the manuscript and supporting files.Source data files have been provided for Figures 4 and 5 and for Supplemental Figure 4, and are available on GitHub with the URL provided in the Data and code availability section.

The following data sets were generated

Article and author information

Author details

  1. Matthew D Lauver

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel J Goetschius

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6052-7141
  3. Colleen S Netherby-Winslow

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katelyn N Ayers

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ge Jin

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel G Haas

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth L Frost

    Neuroscience, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sung Hyun Cho

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Carol Bator

    Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephanie M Bywaters

    Pathology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Neil D Christensen

    Pathology, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Susan L Hafenstein

    Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Aron E Lukacher

    Microbiology and Immunology, Penn State College of Medicine, Hershey, United States
    For correspondence
    alukacher@pennstatehealth.psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7969-2841

Funding

National Institute of Neurological Disorders and Stroke (R01NS088367)

  • Aron E Lukacher

National Institute of Neurological Disorders and Stroke (R01NS092662)

  • Aron E Lukacher

National Institute of Allergy and Infectious Diseases (R01AI107121)

  • Susan L Hafenstein

National Institute of Neurological Disorders and Stroke (F32NS106730)

  • Colleen S Netherby-Winslow

National Institute of Neurological Disorders and Stroke (F31NS083336)

  • Elizabeth L Frost

National Cancer Institute (T32CA060395)

  • Matthew D Lauver

National Cancer Institute (T32CA60395)

  • Stephanie M Bywaters

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving mice were conducted with the approval of Institutional Animal Care and Use Committee (Protocol 47619) of The Pennsylvania State University College of Medicine in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The Pennsylvania State University College of Medicine Animal Resource Program is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC). The Pennsylvania State University College of Medicine has an Animal Welfare Assurance on file with the National Institutes of Health's Office of Laboratory Animal Welfare; the Assurance Number is A3045-01.

Copyright

© 2020, Lauver et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,661
    views
  • 316
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew D Lauver
  2. Daniel J Goetschius
  3. Colleen S Netherby-Winslow
  4. Katelyn N Ayers
  5. Ge Jin
  6. Daniel G Haas
  7. Elizabeth L Frost
  8. Sung Hyun Cho
  9. Carol Bator
  10. Stephanie M Bywaters
  11. Neil D Christensen
  12. Susan L Hafenstein
  13. Aron E Lukacher
(2020)
Antibody escape by polyomavirus capsid mutation facilitates neurovirulence
eLife 9:e61056.
https://doi.org/10.7554/eLife.61056

Share this article

https://doi.org/10.7554/eLife.61056

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.