(A) Frame sequence of a monkey and a human facial expression. (B) Monkey motion capture with 43 reflecting facial markers. (C) Regularized face mesh, whose deformation is controlled by an embedded …
(A) Histograms of the classification data for the four classes (see text) as functions of the style parameters e and s. Data is shown for the human avatar, front view, using the original …
Classes correspond to the four prototype motions, as specified in Figure 1D (i = 1: human-angry, 2: human-fear, 3: monkey-threat, 4: monkey-fear). (A) Results for the stimuli generated using …
(A) Fitted species-tuning functions DH(s) (solid lines) and DM(s) (dashed lines) for the categorization of patterns as monkey vs. human expressions, separately for the two avatar types (human and …
Classes correspond to the four prototype motions, as specified in Figure 1D (i = 1: human-angry, 2: human-fear, 3: monkey-threat, 4: monkey-fear). (A) Results for the stimuli generated using …
(A) Mean perceived expressivity ratings for stimulus sets that were equilibrated using different types of measures for the amount of expressive low-level information: OF: optic flow computed with an …
Classes correspond to the four prototype motions, as specified in Figure 1D (i = 1: human-angry, 2: human-fear, 3: monkey-threat, 4: monkey-fear). (A) Results for the stimuli set derived from …
(A) Irregular surface mesh resulting from the magnetic resonance scan of a monkey head. (B) Face mesh, the deformation of which is following control points specified by motion-captured markers. (C) …
(A) Human face mesh and deformations by a blendshape approach, in which face poses are driven by the 43 control points (top panel). Tension map algorithm computes compression (green) and stretching …
Reagent type (species) or resource | Designation | Source or reference | Identifiers | Additional information |
---|---|---|---|---|
Software, algorithm | Custom-written software written in C# | This study | https://hih-git.neurologie.uni-tuebingen.de/ntaubert/FacialExpressions (copy archived at swh:1:rev:6d041a0a0cc7055618f85891b85d76e0e7f80eed; Taubert, 2021) | |
Software, algorithm | C3Dserver | Website | https://www.c3dserver.com | |
Software, algorithm | Visual C++ Redistributable for Visual Studio 2012 Update4 × 86 and x64 | Website | https://www.microsoft.com/en-US/download/details.aspx?id=30679 | |
Software, algorithm | AssimpNet | Website | https://www.nuget.org/packages/AssimpNet | |
Software, algorithm | Autodesk Maya 2018 | Website | https://www.autodesk.com/education/free-software/maya | |
Software, algorithm | MATLAB 2019b | Website | https://www.mathworks.com/products/matlab.html | |
Software, algorithm | Psychophysics toolbox 3.0.15 | Website | http://psychtoolbox.org/ | |
Software, algorithm | R 3.6 | Website | https://www.r-project.org/ | |
Other | Training data for interpolation algorithm | This study | https://hih-git.neurologie.uni-tuebingen.de/ntaubert/FacialExpressions/tree/master/Data/MonkeyHumanFaceExpression | |
Other | Stimuli for experiments | This study | https://hih-git.neurologie.uni-tuebingen.de/ntaubert/FacialExpressions/tree/master/Stimuli |
Results of the accuracy and the Bayesian Information Criterion (BIC) for the different logistic multinomial regression models for the stimuli derived from the original motion (no occlusions) for the …
Model comparison | ||||||||
---|---|---|---|---|---|---|---|---|
Monkey front view | Model | Accuracy [%] | Accuracy increase [%] | BIC | Parameters | df | χ2 | p |
Model 1 | 38.29 | 7487 | 33 | |||||
Model 2 | 57.86 | 19,56 (relative to Model 1) | 5076 | 36 | 3 | 2411 | <0,0001 | |
Model 3 | 49.49 | 11,2 (relative to Model 1) | 6125 | 36 | 3 | 1362 | <0,0001 | |
Model 4 | 77.53 | 19,67 (relative to Model 2) | 3586 | 39 | 3 | 1490 | <0,0001 | |
Model 5 | 77.53 | 0 (relative to Model 4) | 3598 | 42 | 3 | 11.997 | <0.0074 | |
Model 6 | 77.42 | −0,11 (relative to Model 4) | 3580 | 42 | 3 | 5.675 | 0.129 | |
Human front view | ||||||||
Model 1 | 36.84 | 7481 | 33 | |||||
Model 2 | 54.22 | 17,38 (relative to Model 1) | 5541 | 36 | 3 | 1940 | <0,0001 | |
Model 3 | 53.56 | 16,72 (relative to Model 1) | 5847 | 36 | 3 | 1633 | <0,0001 | |
Model 4 | 81.56 | 27,35 (relative to Model 2) | 3420 | 39 | 3 | 2120 | <0,0001 | |
Model 5 | 81.35 | −0,22 (relative to Model 4) | 3309 | 42 | 3 | 112 | <0,0001 | |
Model 6 | 81.38 | −0,18 (relative to Model 4) | 3389 | 42 | 3 | 31.66 | <0,0001 | |
Monkey 30-degree | ||||||||
Model 1 | 35.32 | 6913 | 33 | |||||
Model 2 | 57.40 | 22,08 (relative to Model 1) | 4314 | 36 | 3 | 2622 | <0,0001 | |
Model 3 | 49.36 | 14,04 (relative to Model 1) | 5179 | 36 | 3 | 1757 | <0,0001 | |
Model 4 | 84.04 | 26,64 (relative to Model 2) | 2359 | 39 | 3 | 1977 | <0,0001 | |
Model 5 | 84.88 | 0,84 (relative to Model 4) | 2335 | 42 | 3 | 48 | <0,0001 | |
Model 6 | 84.08 | 0,04 (relative to Model 4) | 2331 | 42 | 3 | 28 | <0,0001 | |
Human 30-degree | ||||||||
Model 1 | 37.40 | 6819 | 33 | |||||
Model 2 | 55.72 | 18,32 (relative to Model 1) | 4843 | 36 | 3 | 1975 | <0,0001 | |
Model 3 | 54.36 | 16,96 (relative to Model 1) | 5217 | 36 | 3 | 1602 | <0,0001 | |
Model 4 | 81.32 | 25,6 (relative to Model 2) | 2910 | 39 | 3 | 1956 | <0,0001 | |
Model 5 | 82.88 | 1,56 (relative to Model 4) | 2809 | 42 | 3 | 101 | <0,0001 | |
Model 6 | 81.92 | 0,6 (relative to Model 4) | 2890 | 42 | 3 | 19 | 0.0002 |
The observation matrix Y is formed by N samples of dimension D, where N results from S * E trails with T time steps. The dimensions M and Q of the latent variables were manually chosen. The integers …
Parameters of motion morphing algorithm | ||
---|---|---|
Parameters | Description | Value |
D | Data dimension | 208 |
M | First layer dimension | 6 |
Q | Second layer dimension | 2 |
T | Number of samples per trial | 150 |
S | Number of species | 2 |
E | Number of expressions | two or 3 |
N | Number of all samples | T * S * E |
Hyper parameters (learned) | Size | |
Inverse width of kernel | 1 | |
Inverse width of kernel | 1 | |
Inverse width for non-linear part one of kernel | 1 | |
Inverse width for non-linear part two of kernel | 1 | |
Precision absorbed from noise term | 1 | |
Variance for non-linear part of | 1 | |
Variance for linear part of | 1 | |
Variance for non-linear part of | 1 | |
Variance for linear part of | 1 | |
Variance for non-linear part of | 1 | |
Variance for linear part one of | 1 | |
Variance for linear part two of | 1 | |
Variables | Size | |
Y | Data | N x D |
H | Latent variable of first layer | N x M |
X | Latent variable of second layer | N x Q |
Style variable vector for monkey species | S x 1 | |
Style variable vector for human species | S x 1 | |
Style variable vector for expression one | E x 1 | |
Style variable vector for expression two | E x 1 |
ANOVA for the threshold: two-way mixed model with expression type as within-subject factor and the stimulus type as between-subject factor for both the monkey and the human avatar. Steepness: …
ANOVAs | ||||||
---|---|---|---|---|---|---|
Threshold | Monkey avatar | Sum of square | df | Mean square | F | p |
Stimulus type | 0,00 | 2 | 0,00 | 0,00 | 0999 | |
Expression type | 1,20 | 1 | 1,20 | 188,83 | 0000 | |
Stimulus * Expression | 0,06 | 2 | 0,03 | 4,51 | 0015 | |
Error | 0,42 | 60 | 0,01 | |||
Total | 1,72 | 65 | ||||
Human avatar | ||||||
Stimulus type | 0,00 | 2 | 0,00 | 0,01 | 0993 | |
Expression type | 0,40 | 1 | 0,40 | 46,37 | 0000 | |
Stimulus * Expression | 0,05 | 2 | 0,03 | 3,15 | 0049 | |
Error | 0,57 | 60 | 0,01 | |||
Total | 1,02 | 65 | ||||
Steepness | Original motion stimulus | |||||
Avatar type | 376,68 | 1 | 376,68 | 6,3 | 0016 | |
Expression type | 0,36 | 1 | 0,36 | 0,01 | 0939 | |
Avatar * Expression | 0,16 | 1 | 0,16 | 0 | 0959 | |
Error | 2391,21 | 40 | 59,78 | |||
Total | 2768,41 | 43 | ||||
Occluded motion stimulus | ||||||
Avatar type | 286,17 | 1 | 286,17 | 3,33 | 0076 | |
Expression type | 0,02 | 1 | 0,02 | 0 | 0988 | |
Avatar * Expression | 0,00 | 1 | 0,00 | 0 | 0995 | |
Error | 3094,54 | 36 | 85,96 | |||
Total | 3380,73 | 39 | ||||
Equilibrated motion stimulus | ||||||
Avatar type | 1,57 | 1 | 1,57 | 0,4 | 0533 | |
Expression type | 0,25 | 1 | 0,25 | 0,06 | 0803 | |
Avatar * Expression | 0,02 | 1 | 0,02 | 0 | 0945 | |
Error | 174,76 | 44 | 3,97 | |||
Total | 176,60 | 47 |