The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching
Abstract
The bacterial flagellar motor switches rotational directions between counterclockwise (CCW) and clockwise (CW) to direct the migration of the cell. The cytoplasmic ring (C-ring) of the motor, which is composed of FliG, FliM, and FliN, is known for controlling the rotational sense of the flagellum. However, the mechanism underlying rotational switching remains elusive. Here, we deployed cryo-electron tomography to visualize the C-ring in two rotational biased mutants in Vibrio alginolyticus. We determined the C-ring molecular architectures, providing novel insights into the mechanism of rotational switching. We report that the C-ring maintained 34-fold symmetry in both rotational senses and the protein composition remained constant. The two structures show FliG conformational changes elicit a large conformational rearrangement of the rotor complex that coincides with rotational switching of the flagellum. FliM and FliN form a stable spiral-shaped base of the C-ring, likely stabilizing the C-ring during the conformational remodeling.
Data availability
The resulting structures have been deposited in EMDB under accession codes EMD-21819 and EMD-21837.
Article and author information
Author details
Funding
Japan Society for the Promotion of Science (JP16H04774)
- Seiji Kojima
Japan Society of Ultrasonics in Medicine (JP18K19293)
- Seiji Kojima
National Institute of Allergy and Infectious Diseases (AI087946)
- Jun Liu
National Institute of General Medical Sciences (GM107629)
- Jun Liu
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Carroll et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,807
- views
-
- 354
- downloads
-
- 54
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.