Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons

  1. Timothy A Currier
  2. Andrew MM Matheson
  3. Katherine I Nagel  Is a corresponding author
  1. NYU and NYU School of Medicine, United States
  2. NYU School of Medicine, United States

Abstract

The insect Central Complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of central complex neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.

Data availability

All electrophysiology, behavior, and anatomy data are publicly available on Dryad at https://doi.org/10.5061/dryad.vq83bk3rh.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Timothy A Currier

    Center for Neural Science/Neuroscience Institute, NYU and NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1092-5563
  2. Andrew MM Matheson

    Neuroscience Institute, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9062-2521
  3. Katherine I Nagel

    Neuroscience Institute, NYU School of Medicine, New York, United States
    For correspondence
    katherine.nagel@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6701-3901

Funding

National Institute on Deafness and Other Communication Disorders (R01DC017979)

  • Katherine I Nagel

National Institute of Mental Health (R01MH109690)

  • Katherine I Nagel

McKnight Endowment Fund for Neuroscience (Scholar Award)

  • Katherine I Nagel

National Science Foundation (IOS-1555933)

  • Katherine I Nagel

New York University (Dean's Fellowship)

  • Timothy A Currier

National Science Foundation (neuronex)

  • Katherine I Nagel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Currier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,437
    views
  • 459
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy A Currier
  2. Andrew MM Matheson
  3. Katherine I Nagel
(2020)
Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons
eLife 9:e61510.
https://doi.org/10.7554/eLife.61510

Share this article

https://doi.org/10.7554/eLife.61510