Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium
Abstract
Climbing fibers (CFs) generate complex spikes (CS) and Ca2+ transients in cerebellar Purkinje cells (PCs), serving as instructive signals. The so-called 'all-or-none' character of CSs has been questioned since the CF burst was described. Although recent studies have indicated a sensory-driven enhancement of PC Ca2+ signals, how CF responds to sensory events and contributes to PC dendritic Ca2+ and CS remains unexplored. Here, single or simultaneous Ca2+ imaging of CFs and PCs in awake mice revealed the presynaptic CF Ca2+ amplitude encoded the sensory input's strength and directly influenced post-synaptic PC dendritic Ca2+ amplitude. The sensory-driven variability in CF Ca2+ amplitude depended on the number of spikes in the CF burst. Finally, the spike number of the CF burst determined the PC Ca2+ influx and CS properties. These results reveal the direct translation of sensory information-coding CF inputs into PC Ca2+, suggesting the sophisticated role of CFs as error signals.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 through 5. Code has been made available via GitHub at https://github.com/NeuRoh1/Calcium_signal_processing .
Article and author information
Author details
Funding
National Research Foundation of Korea (2018R1A5A2025964)
- Sang Jeong Kim
National Research Foundation of Korea (2017M3C7A1029611)
- Sang Jeong Kim
National Research Foundation of Korea (2016R1D1A1A02937329)
- Sun Kwang Kim
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#SNU-111214-6-3) of the Seoul National University. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Seoul National Universtiy. All surgery was performed under intraperitoneal injections of Zoletil/Rompun mixture (30 mg / 10 mg/kg), and every effort was made to minimize suffering.
Copyright
© 2020, Roh et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,327
- views
-
- 337
- downloads
-
- 15
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.
-
- Neuroscience
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.