Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium

  1. Seung-Eon Roh
  2. Seung Ha Kim
  3. Changhyeon Ryu
  4. Chang-Eop Kim
  5. Yong Gyu Kim
  6. Paul F Worley
  7. Sun Kwang Kim
  8. Sang Jeong Kim  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. Seoul National University College of Medicine, Korea (South), Republic of
  3. Gachon University College of Korean Medicine, Republic of Korea
  4. Kyoung Hee University College of Korean Medicine, Republic of Korea
  5. Seoul National University College of Medicine, Republic of Korea

Abstract

Climbing fibers (CFs) generate complex spikes (CS) and Ca2+ transients in cerebellar Purkinje cells (PCs), serving as instructive signals. The so-called 'all-or-none' character of CSs has been questioned since the CF burst was described. Although recent studies have indicated a sensory-driven enhancement of PC Ca2+ signals, how CF responds to sensory events and contributes to PC dendritic Ca2+ and CS remains unexplored. Here, single or simultaneous Ca2+ imaging of CFs and PCs in awake mice revealed the presynaptic CF Ca2+ amplitude encoded the sensory input's strength and directly influenced post-synaptic PC dendritic Ca2+ amplitude. The sensory-driven variability in CF Ca2+ amplitude depended on the number of spikes in the CF burst. Finally, the spike number of the CF burst determined the PC Ca2+ influx and CS properties. These results reveal the direct translation of sensory information-coding CF inputs into PC Ca2+, suggesting the sophisticated role of CFs as error signals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 through 5. Code has been made available via GitHub at https://github.com/NeuRoh1/Calcium_signal_processing .

Article and author information

Author details

  1. Seung-Eon Roh

    Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seung Ha Kim

    Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  3. Changhyeon Ryu

    Physiology, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5207-9142
  4. Chang-Eop Kim

    Physiology, Gachon University College of Korean Medicine, Seongnam, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Yong Gyu Kim

    Department of Physiology, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul F Worley

    Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5086-614X
  7. Sun Kwang Kim

    Physiology, Kyoung Hee University College of Korean Medicine, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2649-6652
  8. Sang Jeong Kim

    Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
    For correspondence
    sangjkim@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8931-3713

Funding

National Research Foundation of Korea (2018R1A5A2025964)

  • Sang Jeong Kim

National Research Foundation of Korea (2017M3C7A1029611)

  • Sang Jeong Kim

National Research Foundation of Korea (2016R1D1A1A02937329)

  • Sun Kwang Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#SNU-111214-6-3) of the Seoul National University. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Seoul National Universtiy. All surgery was performed under intraperitoneal injections of Zoletil/Rompun mixture (30 mg / 10 mg/kg), and every effort was made to minimize suffering.

Copyright

© 2020, Roh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,274
    views
  • 333
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seung-Eon Roh
  2. Seung Ha Kim
  3. Changhyeon Ryu
  4. Chang-Eop Kim
  5. Yong Gyu Kim
  6. Paul F Worley
  7. Sun Kwang Kim
  8. Sang Jeong Kim
(2020)
Direct translation of climbing fiber burst-mediated sensory coding into post-synaptic Purkinje cell dendritic calcium
eLife 9:e61593.
https://doi.org/10.7554/eLife.61593

Share this article

https://doi.org/10.7554/eLife.61593

Further reading

    1. Cell Biology
    2. Neuroscience
    Luting Yang, Chunqing Hu ... Yaping Yan
    Research Article

    Reactive astrocytes play critical roles in the occurrence of various neurological diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a glycolysis-dominant metabolic switch. However, the role and molecular mechanism of metabolic reprogramming in activation of astrocytes have not been clarified. Here, we found that PKM2, a rate-limiting enzyme of glycolysis, displayed nuclear translocation in astrocytes of EAE (experimental autoimmune encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2 nuclear import by DASA-58 significantly reduced the activation of mice primary astrocytes, which was observed by decreased proliferation, glycolysis and secretion of inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to phosphorylate STAT3, NF-κB and interact with c-myc. Further single-cell RNA sequencing and immunofluorescence staining demonstrated that TRIM21 expression was upregulated in astrocytes of EAE. TRIM21 overexpressing in mice primary astrocytes enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS inflammation and demyelination in EAE. Collectively, our study provides novel insights into the pathological function of nuclear glycolytic enzyme PKM2 and ubiquitination-mediated regulatory mechanism that are involved in astrocyte activation. Targeting this axis may be a potential therapeutic strategy for the treatment of astrocyte-involved neurological disease.

    1. Neuroscience
    Felix Michaud, Ruggiero Francavilla ... Lisa Topolnik
    Research Article

    Alzheimer’s disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.