Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice

  1. Georges Raad
  2. Fabrizio Serra
  3. Luc Martin
  4. Marie-Alix Derieppe
  5. Jérôme Gilleron
  6. Vera L Costa
  7. Didier F Pisani
  8. Ez-Zoubir Amri
  9. Michele Trabucchi
  10. Valerie Grandjean  Is a corresponding author
  1. Université Côte d'Azur, CNRS, Inserm, France
  2. Inserm, France
  3. French Institute of Health and Medical Research, France

Abstract

Obesity is a growing societal scourge. Recent studies have uncovered that paternal excessive weight induced by an unbalanced diet affects the metabolic health of offspring. These reports mainly employed single-generation male exposure. However, the consequences of multigenerational unbalanced diet feeding on the metabolic health of progeny remain largely unknown. Here, we show that maintaining paternal western diet feeding for five consecutive generations in mice induces an enhancement in fat mass and related metabolic diseases over generations. Strikingly, chow-diet-fed progenies from these multigenerational western-diet-fed males develop a 'healthy' overweight phenotype characterized by normal glucose metabolism and without fatty liver that persists for 4 subsequent generations. Mechanistically, sperm RNA microinjection experiments into zygotes suggest that sperm RNAs are sufficient for establishment but not for long-term maintenance of epigenetic inheritance of metabolic pathologies. Progressive and permanent metabolic deregulation induced by successive paternal western-diet-fed generations may contribute to the worldwide epidemic of metabolic diseases.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE138989 and GSE148972. All data generated or analyses during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Georges Raad

    iBV, Université Côte d'Azur, CNRS, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8800-2796
  2. Fabrizio Serra

    C3M, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Luc Martin

    iBV, Université Côte d'Azur, CNRS, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Alix Derieppe

    iBV, Université Côte d'Azur, CNRS, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jérôme Gilleron

    U1065, French Institute of Health and Medical Research, NICE, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Vera L Costa

    C3M, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Didier F Pisani

    iBV, Université Côte d'Azur, CNRS, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Ez-Zoubir Amri

    iBV, Université Côte d'Azur, CNRS, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Michele Trabucchi

    C3M, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Valerie Grandjean

    C3M, Inserm, Nice, France
    For correspondence
    grandjea@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1661-7411

Funding

Agence Nationale de la Recherche (NR-12-ADAPT-0022)

  • Georges Raad

Fonds Francais pour l'Alimentation et la Sante (15D52)

  • Marie-Alix Derieppe

UCA-IDEX

  • Fabrizio Serra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were conducted in accordance with the French and European legislations for the care and use of research animals. All of the animals were handled according to approved institutional animal care and use committee (APAFIS#8729-2017012716401597 (V7)) protocols (#381) of the Ministère de l'Enseignement Supérieur de la Recherche et de l'innovation. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Nice (Permit Number: 217-36).

Copyright

© 2021, Raad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,182
    views
  • 356
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Georges Raad
  2. Fabrizio Serra
  3. Luc Martin
  4. Marie-Alix Derieppe
  5. Jérôme Gilleron
  6. Vera L Costa
  7. Didier F Pisani
  8. Ez-Zoubir Amri
  9. Michele Trabucchi
  10. Valerie Grandjean
(2021)
Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice
eLife 10:e61736.
https://doi.org/10.7554/eLife.61736

Share this article

https://doi.org/10.7554/eLife.61736

Further reading

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.