Proteomics reveals synergy between biomass degrading enzymes and inorganic Fenton chemistry in leaf-cutting ant colonies

  1. Morten Schiøtt  Is a corresponding author
  2. Jacobus J Boomsma
  1. University of Copenhagen, Denmark

Abstract

The symbiotic partnership between leaf-cutting ants and fungal cultivars processes plant biomass via ant fecal fluid mixed with chewed plant substrate before fungal degradation. Here we present a full proteome of the fecal fluid of Acromyrmex leaf-cutting ants, showing that most proteins function as biomass degrading enzymes and that ca. 85% are produced by the fungus and ingested, but not digested, by the ants. Hydrogen peroxide producing oxidoreductases were remarkably common in the proteome, inspiring us to test a scenario in which hydrogen peroxide reacts with iron to form reactive oxygen radicals after which oxidized iron is reduced by other fecal-fluid enzymes. Our biochemical assays confirmed that these so-called Fenton reactions do indeed take place in special substrate pellets, presumably to degrade plant cell wall polymers. This implies that the symbiotic partnership manages a combination of oxidative and enzymatic biomass degradation, an achievement that surpasses current human bioconversion technology.

Data availability

The mass spectrometry data generated in this project as well as the amino acid sequences used for protein identification have been submitted to the PRIDE Archive with accession number PXD016395. All other data is provided in the Supplementary Table S1 and the source data files provided for Figures 3 and 4.

The following data sets were generated

Article and author information

Author details

  1. Morten Schiøtt

    Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    mosch@aqua.dtu.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4309-8090
  2. Jacobus J Boomsma

    Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3598-1609

Funding

Danmarks Grundforskningsfond (DNRF57)

  • Jacobus J Boomsma

H2020 European Research Council (Advanced Grant 323085)

  • Jacobus J Boomsma

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dieter Ebert, University of Basel, Switzerland

Version history

  1. Received: August 5, 2020
  2. Accepted: January 9, 2021
  3. Accepted Manuscript published: January 12, 2021 (version 1)
  4. Version of Record published: February 11, 2021 (version 2)

Copyright

© 2021, Schiøtt & Boomsma

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,262
    views
  • 154
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Morten Schiøtt
  2. Jacobus J Boomsma
(2021)
Proteomics reveals synergy between biomass degrading enzymes and inorganic Fenton chemistry in leaf-cutting ant colonies
eLife 10:e61816.
https://doi.org/10.7554/eLife.61816

Share this article

https://doi.org/10.7554/eLife.61816

Further reading

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.

    1. Ecology
    Lan Pang, Gangqi Fang ... Jianhua Huang
    Research Article

    The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell—teratocytes—that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.