Proteomics reveals synergy between biomass degrading enzymes and inorganic Fenton chemistry in leaf-cutting ant colonies

  1. Morten Schiøtt  Is a corresponding author
  2. Jacobus J Boomsma
  1. University of Copenhagen, Denmark

Abstract

The symbiotic partnership between leaf-cutting ants and fungal cultivars processes plant biomass via ant fecal fluid mixed with chewed plant substrate before fungal degradation. Here we present a full proteome of the fecal fluid of Acromyrmex leaf-cutting ants, showing that most proteins function as biomass degrading enzymes and that ca. 85% are produced by the fungus and ingested, but not digested, by the ants. Hydrogen peroxide producing oxidoreductases were remarkably common in the proteome, inspiring us to test a scenario in which hydrogen peroxide reacts with iron to form reactive oxygen radicals after which oxidized iron is reduced by other fecal-fluid enzymes. Our biochemical assays confirmed that these so-called Fenton reactions do indeed take place in special substrate pellets, presumably to degrade plant cell wall polymers. This implies that the symbiotic partnership manages a combination of oxidative and enzymatic biomass degradation, an achievement that surpasses current human bioconversion technology.

Data availability

The mass spectrometry data generated in this project as well as the amino acid sequences used for protein identification have been submitted to the PRIDE Archive with accession number PXD016395. All other data is provided in the Supplementary Table S1 and the source data files provided for Figures 3 and 4.

The following data sets were generated

Article and author information

Author details

  1. Morten Schiøtt

    Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    mosch@aqua.dtu.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4309-8090
  2. Jacobus J Boomsma

    Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3598-1609

Funding

Danmarks Grundforskningsfond (DNRF57)

  • Jacobus J Boomsma

H2020 European Research Council (Advanced Grant 323085)

  • Jacobus J Boomsma

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Schiøtt & Boomsma

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,322
    views
  • 165
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Morten Schiøtt
  2. Jacobus J Boomsma
(2021)
Proteomics reveals synergy between biomass degrading enzymes and inorganic Fenton chemistry in leaf-cutting ant colonies
eLife 10:e61816.
https://doi.org/10.7554/eLife.61816

Share this article

https://doi.org/10.7554/eLife.61816

Further reading

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.

    1. Ecology
    2. Neuroscience
    Ralph E Peterson, Aman Choudhri ... Dan H Sanes
    Research Article

    In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations. Three separate gerbil families were transferred to an enlarged environment and continuous 20-day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previously reported and that vocal repertoire usage differs significantly by family. By performing gaussian mixture model clustering on the VAE latent space, we show that families preferentially use characteristic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, gerbils displayed family-specific transitions between vocal clusters. Since gerbils live naturally as extended families in complex underground burrows that are adjacent to other families, these results suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. These findings position the Mongolian gerbil as a compelling animal model to study the neural basis of vocal communication and demonstrates the potential for using unsupervised machine learning with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.