SpikeInterface, a unified framework for spike sorting

  1. Alessio Paolo Buccino  Is a corresponding author
  2. Cole Lincoln Hurwitz
  3. Samuel Garcia
  4. Jeremy Magland
  5. Joshua H Siegle
  6. Roger Hurwitz
  7. Matthias H Hennig
  1. ETH Zurich, Switzerland
  2. University of Edinburgh, United Kingdom
  3. Université de Lyon, France
  4. Flatiron Institute, United States
  5. Allen Institute, United States
  6. Independent Researcher, United States

Abstract

Much development has been directed towards improving the performance and automation of spike sorting. This continuous development, while essential, has contributed to an over-saturation of new, incompatible tools that hinders rigorous benchmarking and complicates reproducible analysis. To address these limitations, we developed SpikeInterface, a Python framework designed to unify preexisting spike sorting technologies into a single codebase and to facilitate straightforward comparison and adoption of different approaches. With a few lines of code, researchers can reproducibly run, compare, and benchmark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular datasets; validate, curate, and export sorting outputs; and more. In this paper, we provide an overview of SpikeInterface and, with applications to real and simulated datasets, demonstrate how it can be utilized to reduce the burden of manual curation and to more comprehensively benchmark automated spike sorters.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The datasets are uploaded to the DANDI archive, dataset 000034 (https://gui.dandiarchive.org/#/dandiset/000034). The source code for generating all figures is also publicly available at: https://spikeinterface.github.io/

The following previously published data sets were used

Article and author information

Author details

  1. Alessio Paolo Buccino

    D-BSSE, ETH Zurich, Basel, Switzerland
    For correspondence
    alessio.buccino@bsse.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3661-527X
  2. Cole Lincoln Hurwitz

    Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2023-1653
  3. Samuel Garcia

    Centre de Recherche en Neuroscience de Lyon, Université de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeremy Magland

    Center for Computational Mathematics, Flatiron Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5286-4375
  5. Joshua H Siegle

    MindScope Program, Allen Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roger Hurwitz

    Independent Researcher, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthias H Hennig

    Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7270-5817

Funding

Wellcome Trust (214431/Z/18/Z)

  • Matthias H Hennig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Buccino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 16,551
    views
  • 1,615
    downloads
  • 221
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessio Paolo Buccino
  2. Cole Lincoln Hurwitz
  3. Samuel Garcia
  4. Jeremy Magland
  5. Joshua H Siegle
  6. Roger Hurwitz
  7. Matthias H Hennig
(2020)
SpikeInterface, a unified framework for spike sorting
eLife 9:e61834.
https://doi.org/10.7554/eLife.61834

Share this article

https://doi.org/10.7554/eLife.61834

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    1. Neuroscience
    François Osiurak, Giovanni Federico ... Mathieu Lesourd
    Research Article

    Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.