DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction

  1. Eva On-Chai Lau
  2. Devid Damiani
  3. Georges Chehade
  4. Nuria Ruiz-Reig
  5. Rana Saade
  6. Yves Jossin
  7. Mohamed Aittaleb
  8. Olivier Schakman
  9. Nicolas Tajeddine
  10. Philippe Gailly
  11. Fadel Tissir  Is a corresponding author
  1. Université catholique de Louvain, Belgium
  2. Université Catholique de Louvain, Belgium
  3. HBKU, Qatar

Abstract

Diaphanous (DIAPH) 3 is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bi-polarity of the mitotic spindle. DIAPH3-deficient cells display disorganized cytoskeleton, and multipolar spindles. DIAPH3-deficiency disrupts the expression and/or stability of several proteins including the kinetochore-associated protein SPAG5. DIAPH3 and SPAG5 have similar expression patterns in the developing brain and overlapping subcellular localization during mitosis. Knockdown of SPAG5 phenocopies the DIAPH3 deficiency, whereas its overexpression rescues the DIAHP3 knockdown phenotype. Conditional inactivation of Diaph3 in mouse cerebral cortex profoundly disrupts neurogenesis depleting cortical progenitors and neurons; and leading to cortical malformation and autistic-like behavior. Our data uncover uncharacterized functions of DIAPH3 and provide evidence that this protein belongs to a molecular toolbox that links microtubule dynamics during mitosis to aneuploidy, cell death, fate determination defects, and cortical malformation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures

Article and author information

Author details

  1. Eva On-Chai Lau

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  2. Devid Damiani

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  3. Georges Chehade

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  4. Nuria Ruiz-Reig

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  5. Rana Saade

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  6. Yves Jossin

    Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8466-7432
  7. Mohamed Aittaleb

    College of Health and Life Sciences, HBKU, Doha, Qatar
    Competing interests
    No competing interests declared.
  8. Olivier Schakman

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  9. Nicolas Tajeddine

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  10. Philippe Gailly

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  11. Fadel Tissir

    Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
    For correspondence
    fadel.tissir@uclouvain.be
    Competing interests
    Fadel Tissir, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9292-6622

Funding

Fonds De La Recherche Scientifique - FNRS (FNRS PDR T00075.15)

  • Fadel Tissir

Fonds De La Recherche Scientifique - FNRS (FNRS PDR T0236.20)

  • Fadel Tissir

Fonds De La Recherche Scientifique - FNRS (EOS 30913351)

  • Fadel Tissir

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were carried out in accordance with European guidelines and approved by the animal ethics committee of the Université Catholique de Louvain (permit number 2019/UCL/MD/006

Copyright

© 2021, Lau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,191
    views
  • 269
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eva On-Chai Lau
  2. Devid Damiani
  3. Georges Chehade
  4. Nuria Ruiz-Reig
  5. Rana Saade
  6. Yves Jossin
  7. Mohamed Aittaleb
  8. Olivier Schakman
  9. Nicolas Tajeddine
  10. Philippe Gailly
  11. Fadel Tissir
(2021)
DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction
eLife 10:e61974.
https://doi.org/10.7554/eLife.61974

Share this article

https://doi.org/10.7554/eLife.61974

Further reading

    1. Neuroscience
    Eun Joo Kim, Mi-Seon Kong ... Jeansok John Kim
    Research Article

    Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an ‘approach food-avoid predator’ task, focusing on the responsiveness of dPAG and BLA neurons to a rapidly approaching robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory-defensive functioning.

    1. Neuroscience
    Yangang Li, Xinyun Zhu ... Yueming Wang
    Research Article

    In motor cortex, behaviorally relevant neural responses are entangled with irrelevant signals, which complicates the study of encoding and decoding mechanisms. It remains unclear whether behaviorally irrelevant signals could conceal some critical truth. One solution is to accurately separate behaviorally relevant and irrelevant signals at both single-neuron and single-trial levels, but this approach remains elusive due to the unknown ground truth of behaviorally relevant signals. Therefore, we propose a framework to define, extract, and validate behaviorally relevant signals. Analyzing separated signals in three monkeys performing different reaching tasks, we found neural responses previously considered to contain little information actually encode rich behavioral information in complex nonlinear ways. These responses are critical for neuronal redundancy and reveal movement behaviors occupy a higher-dimensional neural space than previously expected. Surprisingly, when incorporating often-ignored neural dimensions, behaviorally relevant signals can be decoded linearly with comparable performance to nonlinear decoding, suggesting linear readout may be performed in motor cortex. Our findings prompt that separating behaviorally relevant signals may help uncover more hidden cortical mechanisms.