Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues

  1. Andrew W DeVilbiss
  2. Zhiyu Zhao
  3. Misty S Martin-Sandoval
  4. Jessalyn M Ubellacker
  5. Alpaslan Tasdogan
  6. Michalis Agathocleous
  7. Thomas P Mathews  Is a corresponding author
  8. Sean J Morrison  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States

Abstract

Little is known about the metabolic regulation of rare cell populations because most metabolites are hard to detect in small numbers of cells. We previously described a method for metabolomic profiling of flow cytometrically-isolated hematopoietic stem cells (HSCs) that detects 60 metabolites in 10,000 cells (Agathocleous et al., 2017). Here we describe a new method involving hydrophilic liquid interaction chromatography and high-sensitivity orbitrap mass spectrometry that detected 160 metabolites in 10,000 HSCs, including many more glycolytic and lipid intermediates. We improved chromatographic separation, increased mass resolution, minimized ion suppression, and eliminated sample drying. Most metabolite levels did not significantly change during cell isolation. Mouse HSCs exhibited increased glycerophospholipids relative to bone marrow cells and methotrexate treatment altered purine biosynthesis. Circulating human melanoma cells were depleted for purine intermediates relative to subcutaneous tumors, suggesting decreased purine synthesis during metastasis. These methods facilitate the routine metabolomic analysis of rare cells from tissues.

Data availability

All data generated or analyzed during this study are included in the manuscript and the source data files.

Article and author information

Author details

  1. Andrew W DeVilbiss

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9739-2543
  2. Zhiyu Zhao

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6308-6997
  3. Misty S Martin-Sandoval

    Children's Medical Center Research Institute at UT Southwestern, Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Jessalyn M Ubellacker

    Children's Medical Center Research Institute at UT Southwestern, Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Alpaslan Tasdogan

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Michalis Agathocleous

    Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Thomas P Mathews

    Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    thomas.mathews@UTSouthwestern.edu
    Competing interests
    No competing interests declared.
  8. Sean J Morrison

    Children's Medical Center Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    sean.morrison@utsouthwestern.edu
    Competing interests
    Sean J Morrison, advisor for Frequency Therapeutics and Protein Fluidics as well as a stockholder in G1 Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1587-8329

Funding

Howard Hughes Medical Institute

  • Thomas P Mathews
  • Sean J Morrison

National Institutes of Health

  • Sean J Morrison

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments complied with all relevant ethical regulations and were performed according to protocols approved by the Institutional Animal Care and Use Committee at the University of Texas Southwestern Medical Center (protocols 2016-101360 and 2019-102632).

Copyright

© 2021, DeVilbiss et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,534
    views
  • 889
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew W DeVilbiss
  2. Zhiyu Zhao
  3. Misty S Martin-Sandoval
  4. Jessalyn M Ubellacker
  5. Alpaslan Tasdogan
  6. Michalis Agathocleous
  7. Thomas P Mathews
  8. Sean J Morrison
(2021)
Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues
eLife 10:e61980.
https://doi.org/10.7554/eLife.61980

Share this article

https://doi.org/10.7554/eLife.61980

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Stem Cells and Regenerative Medicine
    Tino Stauber, Greta Moschini ... Jess G Snedeker
    Research Article

    Tendinopathies are debilitating diseases currently increasing in prevalence and associated costs. There is a need to deepen our understanding of the underlying cell signaling pathways to unlock effective treatments. In this work, we screen cell signaling pathways in human tendinopathies and find positively enriched IL-6/JAK/STAT signaling alongside signatures of cell populations typically activated by IL-6 in other tissues. In human tendinopathic tendons, we also confirm the strong presence and co-localization of IL-6, IL-6R, and CD90, an established marker of reparative fibroblasts. To dissect the underlying causalities, we combine IL-6 knock-out mice with an explant-based assembloid model of tendon damage to successfully connect IL-6 signaling to reparative fibroblast activation and recruitment. Vice versa, we show that these reparative fibroblasts promote the development of tendinopathy hallmarks in the damaged explant upon IL-6 activation. We conclude that IL-6 activates tendon fibroblast populations which then initiate and deteriorate tendinopathy hallmarks.