The structural basis for SARM1 inhibition and activation under energetic stress

  1. Michael Sporny
  2. Julia Guez-Haddad
  3. Tami Khazma
  4. Avraham Yaron
  5. Moshe Dessau
  6. Yoel Shkolnisky
  7. Carsten Mim
  8. Michail N Isupov
  9. Ran Zalk
  10. Michael Hons
  11. Yarden Opatowsky  Is a corresponding author
  1. Bar Ilan University, Israel
  2. The Weizmann Institute of Science, Israel
  3. Tel-Aviv University, Israel
  4. Royal Technical Institute (KTH), Sweden
  5. University of Exeter, United Kingdom
  6. Ben-Gurion University of the Negev, Israel
  7. European Molecular Biology Laboratory, France

Abstract

SARM1 an executor of axonal degeneration, displays NADase activity that depletes the key cellular metabolite, NAD+, in response to nerve injury. The basis of SARM1 inhibition, and its activation under stress conditions are still unknown. Here, we present cryo-EM maps of SARM1 at 2.9 and 2.7 Å resolution. These indicate that SARM1 homo-octamer avoids premature activation by assuming a packed conformation, with ordered inner and peripheral rings, that prevents dimerization and activation of the catalytic domains. This inactive conformation is stabilized by binding of SARM1's own substrate NAD+ in an allosteric location, away from the catalytic sites. This model was validated by mutagenesis of the allosteric site, which led to constitutively active SARM1. We propose that the reduction of cellular NAD+ concentration contributes to the disassembly of SARM1's peripheral ring, which allows formation of active NADase domain dimers, thereby further depleting NAD+ to cause an energetic catastrophe and cell death.

Data availability

Coordinates and structure factors have been deposited in the Protein Data Bank with accession numbers 6ZFX, 7ANW, 6ZG0, 6ZG1, and in the EMDB with accession numbers 11187, 11834, 11190, 11191 for the GraFix-ed, NAD+ supplemented, not treated, and SAM1-2 models and maps, respectively.

The following data sets were generated

Article and author information

Author details

  1. Michael Sporny

    Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Julia Guez-Haddad

    Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Tami Khazma

    Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Avraham Yaron

    Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9340-7245
  5. Moshe Dessau

    Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1954-3625
  6. Yoel Shkolnisky

    Department of Applied Mathematics, Tel-Aviv University, Tel-Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Carsten Mim

    Dept. For Biomedical Engineering and Health Systems, Royal Technical Institute (KTH), Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6402-8270
  8. Michail N Isupov

    Biosciences, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Ran Zalk

    National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael Hons

    Grenoble Outstation, European Molecular Biology Laboratory, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Yarden Opatowsky

    Life Sciences, Bar Ilan University, Ramat Gan, Israel
    For correspondence
    yarden.opatowsky@biu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9609-1204

Funding

Israel Science Foundation (1425/15)

  • Yarden Opatowsky

Israel Science Foundation (909/19)

  • Yarden Opatowsky

I declare that the funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Sporny et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,450
    views
  • 1,062
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Sporny
  2. Julia Guez-Haddad
  3. Tami Khazma
  4. Avraham Yaron
  5. Moshe Dessau
  6. Yoel Shkolnisky
  7. Carsten Mim
  8. Michail N Isupov
  9. Ran Zalk
  10. Michael Hons
  11. Yarden Opatowsky
(2020)
The structural basis for SARM1 inhibition and activation under energetic stress
eLife 9:e62021.
https://doi.org/10.7554/eLife.62021

Share this article

https://doi.org/10.7554/eLife.62021

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.