The structural basis for SARM1 inhibition and activation under energetic stress

  1. Michael Sporny
  2. Julia Guez-Haddad
  3. Tami Khazma
  4. Avraham Yaron
  5. Moshe Dessau
  6. Yoel Shkolnisky
  7. Carsten Mim
  8. Michail N Isupov
  9. Ran Zalk
  10. Michael Hons
  11. Yarden Opatowsky  Is a corresponding author
  1. Bar Ilan University, Israel
  2. The Weizmann Institute of Science, Israel
  3. Tel-Aviv University, Israel
  4. Royal Technical Institute (KTH), Sweden
  5. University of Exeter, United Kingdom
  6. Ben-Gurion University of the Negev, Israel
  7. European Molecular Biology Laboratory, France

Abstract

SARM1 an executor of axonal degeneration, displays NADase activity that depletes the key cellular metabolite, NAD+, in response to nerve injury. The basis of SARM1 inhibition, and its activation under stress conditions are still unknown. Here, we present cryo-EM maps of SARM1 at 2.9 and 2.7 Å resolution. These indicate that SARM1 homo-octamer avoids premature activation by assuming a packed conformation, with ordered inner and peripheral rings, that prevents dimerization and activation of the catalytic domains. This inactive conformation is stabilized by binding of SARM1's own substrate NAD+ in an allosteric location, away from the catalytic sites. This model was validated by mutagenesis of the allosteric site, which led to constitutively active SARM1. We propose that the reduction of cellular NAD+ concentration contributes to the disassembly of SARM1's peripheral ring, which allows formation of active NADase domain dimers, thereby further depleting NAD+ to cause an energetic catastrophe and cell death.

Data availability

Coordinates and structure factors have been deposited in the Protein Data Bank with accession numbers 6ZFX, 7ANW, 6ZG0, 6ZG1, and in the EMDB with accession numbers 11187, 11834, 11190, 11191 for the GraFix-ed, NAD+ supplemented, not treated, and SAM1-2 models and maps, respectively.

The following data sets were generated

Article and author information

Author details

  1. Michael Sporny

    Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Julia Guez-Haddad

    Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Tami Khazma

    Life Sciences, Bar Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Avraham Yaron

    Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9340-7245
  5. Moshe Dessau

    Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1954-3625
  6. Yoel Shkolnisky

    Department of Applied Mathematics, Tel-Aviv University, Tel-Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Carsten Mim

    Dept. For Biomedical Engineering and Health Systems, Royal Technical Institute (KTH), Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6402-8270
  8. Michail N Isupov

    Biosciences, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Ran Zalk

    National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael Hons

    Grenoble Outstation, European Molecular Biology Laboratory, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Yarden Opatowsky

    Life Sciences, Bar Ilan University, Ramat Gan, Israel
    For correspondence
    yarden.opatowsky@biu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9609-1204

Funding

Israel Science Foundation (1425/15)

  • Yarden Opatowsky

Israel Science Foundation (909/19)

  • Yarden Opatowsky

I declare that the funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher P Hill, University of Utah School of Medicine, United States

Publication history

  1. Received: August 11, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 13, 2020 (version 1)
  4. Version of Record published: November 25, 2020 (version 2)

Copyright

© 2020, Sporny et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,168
    Page views
  • 886
    Downloads
  • 57
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Sporny
  2. Julia Guez-Haddad
  3. Tami Khazma
  4. Avraham Yaron
  5. Moshe Dessau
  6. Yoel Shkolnisky
  7. Carsten Mim
  8. Michail N Isupov
  9. Ran Zalk
  10. Michael Hons
  11. Yarden Opatowsky
(2020)
The structural basis for SARM1 inhibition and activation under energetic stress
eLife 9:e62021.
https://doi.org/10.7554/eLife.62021

Further reading

    1. Structural Biology and Molecular Biophysics
    Zeyu Shen, Bowen Jia ... Mingjie Zhang
    Research Article

    Formation of membraneless organelles or biological condensates via phase separation and related processes hugely expands the cellular organelle repertoire. Biological condensates are dense and viscoelastic soft matters instead of canonical dilute solutions. To date, numerous different biological condensates have been discovered; but mechanistic understanding of biological condensates remains scarce. In this study, we developed an adaptive single molecule imaging method that allows simultaneous tracking of individual molecules and their motion trajectories in both condensed and dilute phases of various biological condensates. The method enables quantitative measurements of concentrations, phase boundary, motion behavior and speed of molecules in both condensed and dilute phases as well as the scale and speed of molecular exchanges between the two phases. Notably, molecules in the condensed phase do not undergo uniform Brownian motion, but instead constantly switch between a (class of) confined state(s) and a random diffusion-like motion state. Transient confinement is consistent with strong interactions associated with large molecular networks (i.e., percolation) in the condensed phase. In this way, molecules in biological condensates behave distinctly different from those in dilute solutions. The methods and findings described herein should be generally applicable for deciphering the molecular mechanisms underlying the assembly, dynamics and consequently functional implications of biological condensates.

    1. Structural Biology and Molecular Biophysics
    Seoyoon Kim, Daehyo Lee ... Duyoung Min
    Tools and Resources

    Single-molecule tweezers, such as magnetic tweezers, are powerful tools for probing nm-scale structural changes in single membrane proteins under force. However, the weak molecular tethers used for the membrane protein studies have limited the observation of long-time, repetitive molecular transitions due to force-induced bond breakage. The prolonged observation of numerous transitions is critical in reliable characterizations of structural states, kinetics, and energy barrier properties. Here, we present a robust single-molecule tweezer method that uses dibenzocyclooctyne (DBCO) cycloaddition and traptavidin binding, enabling the estimation of the folding 'speed limit' of helical membrane proteins. This method is >100 times more stable than a conventional linkage system regarding the lifetime, allowing for the survival for ~12 h at 50 pN and ~1000 pulling cycle experiments. By using this method, we were able to observe numerous structural transitions of a designer single-chained transmembrane (TM) homodimer for 9 h at 12 pN, and reveal its folding pathway including the hidden dynamics of helix-coil transitions. We characterized the energy barrier heights and folding times for the transitions using a model-independent deconvolution method and the hidden Markov modeling (HMM) analysis, respectively. The Kramers rate framework yields a considerably low speed limit of 21 ms for a helical hairpin formation in lipid bilayers, compared to μs scale for soluble protein folding. This large discrepancy is likely due to the highly viscous nature of lipid membranes, retarding the helix-helix interactions. Our results offer a more valid guideline for relating the kinetics and free energies of membrane protein folding.