New capsaicin analogs as molecular rulers to define the permissive conformation of the mouse TRPV1 ligand-binding pocket

  1. Simon Vu
  2. Vikrant Singh
  3. Heike Wulff
  4. Vladimir Yarov-Yarovoy
  5. Jie Zheng  Is a corresponding author
  1. University of California, Davis, United States

Abstract

The capsaicin receptor TRPV1 is an outstanding representative of ligand-gated ion channels in ligand selectivity and sensitivity. However, molecular interactions that stabilize the ligand-binding pocket in its permissive conformation, and how many permissive conformations the ligand-binding pocket may adopt, remain unclear. To answer these questions, we designed a pair of novel capsaicin analogs to increase or decrease the ligand size by about 1.5 Å without altering ligand chemistry. Together with capsaicin, these ligands form a set of molecular rulers for investigating ligand-induced conformational changes. Computational modeling and functional tests revealed that structurally these ligands alternate between drastically different binding poses but stabilize the ligand-binding pocket in nearly identical permissive conformations; functionally they all yielded a stable open state despite varying potencies. Our study suggests the existence of an optimal ligand-binding pocket conformation for capsaicin-mediated TRPV1 activation gating, and reveals multiple ligand-channel interactions that stabilize this permissive conformation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Simon Vu

    Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1529-8220
  2. Vikrant Singh

    Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Heike Wulff

    Pharmacology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vladimir Yarov-Yarovoy

    Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2325-4834
  5. Jie Zheng

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    For correspondence
    jzheng@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4161-627X

Funding

National Institutes of Health (R01NS103954)

  • Jie Zheng

National Institutes of Health (R01NS103954)

  • Vladimir Yarov-Yarovoy

American Heart Association (16PRE29340002)

  • Simon Vu

NIH Office of the Director (U54NS079202)

  • Heike Wulff

National Institute of Neurological Disorders and Stroke (U54NS079202)

  • Heike Wulff

NIH Office of the Director (U54NS079202)

  • Vikrant Singh

National Institute of Neurological Disorders and Stroke (U54NS079202)

  • Vikrant Singh

National Institutes of Health (R01GM132110)

  • Jie Zheng

National Institutes of Health (R01GM132110)

  • Vladimir Yarov-Yarovoy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Vu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,604
    views
  • 265
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Vu
  2. Vikrant Singh
  3. Heike Wulff
  4. Vladimir Yarov-Yarovoy
  5. Jie Zheng
(2020)
New capsaicin analogs as molecular rulers to define the permissive conformation of the mouse TRPV1 ligand-binding pocket
eLife 9:e62039.
https://doi.org/10.7554/eLife.62039

Share this article

https://doi.org/10.7554/eLife.62039

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.