Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4

  1. Lukasz Piszczek
  2. Andreea Constantinescu
  3. Dominic Kargl
  4. Jelena Lazovic
  5. Anton Pekcec
  6. Janet R Nicholson
  7. Wulf Haubensak  Is a corresponding author
  1. Vienna Biocenter, Austria
  2. Vienna BioCenter Core Facilities (VBCF), Austria
  3. Boehringer Ingelheim, Germany

Abstract

Behavioral strategies require gating of premature responses to optimize outcomes. Several brain areas control impulsive actions, but the neuronal basis of natural variation in impulsivity between individuals remain largely unknown. Here, by combining a Go/No-Go behavioral assay with resting state (rs) functional MRI in mice, we identified the subthalamic nucleus (STN), a known gate for motor control in the basal ganglia, as a major hot spot for trait impulsivity. In vivo recorded STN neural activity encoded impulsive action as a separable state from basic motor control, characterized by decoupled STN/Substantia nigra pars reticulata (SNr) mesoscale networks. Optogenetic modulation of STN activity bi-directionally controlled impulsive behavior. Pharmacological and genetic manipulations showed that these impulsive actions are modulated by metabotropic glutamate receptor 4 (mGlu4) function in STN and its coupling to SNr in a behavioral trait-dependent manner, and independently of general motor function. In conclusion, STN circuitry multiplexes motor control and trait impulsivity, which are molecularly dissociated by mGlu4. This provides a potential mechanism for the genetic modulation of impulsive behavior, a clinically relevant predictor for developing psychiatric disorders associated with impulsivity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Lukasz Piszczek

    The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2017-8853
  2. Andreea Constantinescu

    The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
  3. Dominic Kargl

    The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7206-1708
  4. Jelena Lazovic

    Preclinical Imaging Facility, Vienna BioCenter Core Facilities (VBCF), Vienna, Austria
    Competing interests
    No competing interests declared.
  5. Anton Pekcec

    Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Anton Pekcec, is affiliated with Boehringer Ingelheim Pharma GmbH and Co. The author has no competing and/or financial interests to declare..
  6. Janet R Nicholson

    Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
    Competing interests
    Janet R Nicholson, is affiliated with Boehringer Ingelheim Pharma GmbH and Co. The author has no competing and/or financial interests to declare..
  7. Wulf Haubensak

    The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
    For correspondence
    wulf.haubensak@imp.ac.at
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2034-9184

Funding

H2020 European Research Council (311701)

  • Wulf Haubensak

Boehringer Ingelheim

  • Wulf Haubensak

Österreichische Forschungsförderungsgesellschaft

  • Wulf Haubensak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal procedures were performed in accordance with institutional guidelines and were approved by the 4 respective Austrian (BGBl nr. 501/1988, idF BGBl I no. 162/2005) and European authorities (Directive 86/609/EEC of 24 November 1986, European Community) and covered by the license M58/002220/2011/9.

Copyright

© 2022, Piszczek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,600
    views
  • 213
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukasz Piszczek
  2. Andreea Constantinescu
  3. Dominic Kargl
  4. Jelena Lazovic
  5. Anton Pekcec
  6. Janet R Nicholson
  7. Wulf Haubensak
(2022)
Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4
eLife 11:e62123.
https://doi.org/10.7554/eLife.62123

Share this article

https://doi.org/10.7554/eLife.62123

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.