Role of matrix metalloproteinase-9 in neurodevelopmental disorders and plasticity in Xenopus tadpoles

  1. Sayali V Gore
  2. Eric J James
  3. Lin-Chien Huang
  4. Jenn J Park
  5. Andrea Berghella
  6. Adrian Thompson
  7. Hollis T Cline
  8. Carlos Aizenman  Is a corresponding author
  1. Brown University, United States
  2. The Scripps Research Institute, United States

Abstract

Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sayali V Gore

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eric J James

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lin-Chien Huang

    The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jenn J Park

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrea Berghella

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Adrian Thompson

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hollis T Cline

    The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4887-9603
  8. Carlos Aizenman

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    carlos_aizenman@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7378-7217

Funding

National Science Foundation (GRFP)

  • Eric J James

National Eye Institute (R01 EY027380)

  • Carlos Aizenman

Brown University (Carney New Frontiers and OVPR SEED award)

  • Carlos Aizenman

National Eye Institute (R01 EY011261)

  • Lin-Chien Huang
  • Hollis T Cline

National Institute of Neurological Disorders and Stroke (NS076006)

  • Lin-Chien Huang
  • Hollis T Cline

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with and approved by Brown University Institutional Animal Care and Use Committee standards and guidelines (Protocol number 19-05-0016).

Copyright

© 2021, Gore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,726
    views
  • 176
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sayali V Gore
  2. Eric J James
  3. Lin-Chien Huang
  4. Jenn J Park
  5. Andrea Berghella
  6. Adrian Thompson
  7. Hollis T Cline
  8. Carlos Aizenman
(2021)
Role of matrix metalloproteinase-9 in neurodevelopmental disorders and plasticity in Xenopus tadpoles
eLife 10:e62147.
https://doi.org/10.7554/eLife.62147

Share this article

https://doi.org/10.7554/eLife.62147

Further reading

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.