Role of matrix metalloproteinase-9 in neurodevelopmental disorders and plasticity in Xenopus tadpoles

  1. Sayali V Gore
  2. Eric J James
  3. Lin-Chien Huang
  4. Jenn J Park
  5. Andrea Berghella
  6. Adrian Thompson
  7. Hollis T Cline
  8. Carlos Aizenman  Is a corresponding author
  1. Brown University, United States
  2. The Scripps Research Institute, United States

Abstract

Matrix metalloproteinase-9 (MMP-9) is a secreted endopeptidase targeting extracellular matrix proteins, creating permissive environments for neuronal development and plasticity. Developmental dysregulation of MMP-9 may also lead to neurodevelopmental disorders (ND). Here we test the hypothesis that chronically elevated MMP-9 activity during early neurodevelopment is responsible for neural circuit hyperconnectivity observed in Xenopus tadpoles after early exposure to valproic acid (VPA), a known teratogen associated with ND in humans. In Xenopus tadpoles, VPA exposure results in excess local synaptic connectivity, disrupted social behavior and increased seizure susceptibility. We found that overexpressing MMP-9 in the brain copies effects of VPA on synaptic connectivity, and blocking MMP-9 activity pharmacologically or genetically reverses effects of VPA on physiology and behavior. We further show that during normal neurodevelopment MMP-9 levels are tightly regulated by neuronal activity and required for structural plasticity. These studies show a critical role for MMP-9 in both normal and abnormal development.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sayali V Gore

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eric J James

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lin-Chien Huang

    The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jenn J Park

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrea Berghella

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Adrian Thompson

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hollis T Cline

    The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4887-9603
  8. Carlos Aizenman

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    carlos_aizenman@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7378-7217

Funding

National Science Foundation (GRFP)

  • Eric J James

National Eye Institute (R01 EY027380)

  • Carlos Aizenman

Brown University (Carney New Frontiers and OVPR SEED award)

  • Carlos Aizenman

National Eye Institute (R01 EY011261)

  • Lin-Chien Huang
  • Hollis T Cline

National Institute of Neurological Disorders and Stroke (NS076006)

  • Lin-Chien Huang
  • Hollis T Cline

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with and approved by Brown University Institutional Animal Care and Use Committee standards and guidelines (Protocol number 19-05-0016).

Reviewing Editor

  1. Lisa M Monteggia, Vanderbilt University, United States

Version history

  1. Preprint posted: May 31, 2020 (view preprint)
  2. Received: August 15, 2020
  3. Accepted: July 18, 2021
  4. Accepted Manuscript published: July 20, 2021 (version 1)
  5. Accepted Manuscript updated: July 23, 2021 (version 2)
  6. Version of Record published: July 27, 2021 (version 3)

Copyright

© 2021, Gore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,389
    Page views
  • 154
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sayali V Gore
  2. Eric J James
  3. Lin-Chien Huang
  4. Jenn J Park
  5. Andrea Berghella
  6. Adrian Thompson
  7. Hollis T Cline
  8. Carlos Aizenman
(2021)
Role of matrix metalloproteinase-9 in neurodevelopmental disorders and plasticity in Xenopus tadpoles
eLife 10:e62147.
https://doi.org/10.7554/eLife.62147

Further reading

    1. Neuroscience
    Lucas Y Tian, Timothy L Warren ... Michael S Brainard
    Research Article

    Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.

    1. Genetics and Genomics
    2. Neuroscience
    Muniesh Muthaiyan Shanmugam, Jyotiska Chaudhuri ... Pankaj Kapahi
    Research Article

    The Maillard reaction, a chemical reaction between amino acids and sugars, is exploited to produce flavorful food ubiquitously, from the baking industry to our everyday lives. However, the Maillard reaction also occurs in all cells, from prokaryotes to eukaryotes, forming Advanced Glycation End-products (AGEs). AGEs are a heterogeneous group of compounds resulting from the irreversible reaction between biomolecules and α-dicarbonyls (α-DCs), including methylglyoxal (MGO), an unavoidable byproduct of anaerobic glycolysis and lipid peroxidation. We previously demonstrated that Caenorhabditis elegans mutants lacking the glod-4 glyoxalase enzyme displayed enhanced accumulation of α-DCs, reduced lifespan, increased neuronal damage, and touch hypersensitivity. Here, we demonstrate that glod-4 mutation increased food intake and identify that MGO-derived hydroimidazolone, MG-H1, is a mediator of the observed increase in food intake. RNAseq analysis in glod-4 knockdown worms identified upregulation of several neurotransmitters and feeding genes. Suppressor screening of the overfeeding phenotype identified the tdc-1-tyramine-tyra-2/ser-2 signaling as an essential pathway mediating AGEs (MG-H1) induced feeding in glod-4 mutants. We also identified the elt-3 GATA transcription factor as an essential upstream regulator for increased feeding upon accumulation of AGEs by partially controlling the expression of tdc-1 gene. Further, the lack of either tdc-1 or tyra-2/ser-2 receptors suppresses the reduced lifespan and rescues neuronal damage observed in glod-4 mutants. Thus, in C. elegans, we identified an elt-3 regulated tyramine-dependent pathway mediating the toxic effects of MG-H1 AGE. Understanding this signaling pathway may help understand hedonistic overfeeding behavior observed due to modern AGEs-rich diets.