Glycinergic axonal inhibition subserves acute spatial sensitivity to sudden increases in sound intensity

  1. Tom P Franken  Is a corresponding author
  2. Brian J Bondy
  3. David B Haimes
  4. Joshua Goldwyn
  5. Nace L Golding
  6. Philip H Smith
  7. Philip Joris  Is a corresponding author
  1. KU Leuven, Belgium
  2. UT Austin, United States
  3. Swarthmore College, United States
  4. University of Wisconsin-Madison, United States
  5. University of Leuven, Belgium

Abstract

Locomotion generates adventitious sounds which enable detection and localization of predators and prey. Such sounds contain brisk changes or transients in amplitude. We investigated the hypothesis that ill-understood temporal specializations in binaural circuits subserve lateralization of such sound transients, based on different time of arrival at the ears (interaural time differences, ITDs). We find that Lateral Superior Olive (LSO) neurons show exquisite ITD-sensitivity, reflecting extreme precision and reliability of excitatory and inhibitory postsynaptic potentials, in contrast to Medial Superior Olive neurons, traditionally viewed as the ultimate ITD-detectors. In vivo, inhibition blocks LSO excitation over an extremely short window, which, in vitro, required synaptically-evoked inhibition. Light and electron microscopy revealed inhibitory synapses on the axon initial segment as the structural basis of this observation. These results reveal a neural vetoing mechanism with extreme temporal and spatial precision and establish the LSO as the primary nucleus for binaural processing of sound transients.

Data availability

Source data files have been provided for all figures with electrophysiological recordings and for the computational model (Figures 1,2,3,4,7,8 and supplements). Custom MATLAB code for the computational model is provided as a source code file.

Article and author information

Author details

  1. Tom P Franken

    Department of Neuroscience, KU Leuven, Leuven, Belgium
    For correspondence
    tfranken@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7160-5152
  2. Brian J Bondy

    Department of Neuroscience and Center for Learning and Memory, UT Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David B Haimes

    Department of Neuroscience and Center for Learning and Memory, UT Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joshua Goldwyn

    Department of Mathematics and Statistics, Swarthmore College, Swarthmore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5733-9089
  5. Nace L Golding

    Department of Neuroscience and Center for Learning and Memory, UT Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4072-310X
  6. Philip H Smith

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Philip Joris

    University of Leuven, Leuven, Belgium
    For correspondence
    philip.joris@kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9759-5375

Funding

Fonds Wetenschappelijk Onderzoek (Ph.D. fellowship)

  • Tom P Franken

Bijzonder Onderzoeksfonds KU Leuven (OT-14-118)

  • Philip Joris

Fonds Wetenschappelijk Onderzoek (G.0961.11)

  • Philip Joris

Fonds Wetenschappelijk Onderzoek (G.0A11.13)

  • Philip Joris

Fonds Wetenschappelijk Onderzoek (G.091214N)

  • Philip Joris

National Institute on Deafness and Other Communication Disorders (DC006212)

  • Philip H Smith
  • Philip Joris

National Institute on Deafness and Other Communication Disorders (DC011403)

  • Nace L Golding
  • Philip Joris

National Institute on Deafness and Other Communication Disorders (DC006788)

  • Nace L Golding

National Institute on Deafness and Other Communication Disorders (1F31DC017377-01)

  • David B Haimes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All in vivo procedures were approved by the KU Leuven Ethics Committee for Animal Experiments (protocol numbers P155/2008, P123/2010, P167/2012, P123/2013, P005/2014). All in vitro recording and immunohistochemistry experiments were approved by the University of Texas at Austin Animal Care and Use Committee in compliance with the recommendations of the United States National Institutes of Health.

Copyright

© 2021, Franken et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 931
    views
  • 164
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom P Franken
  2. Brian J Bondy
  3. David B Haimes
  4. Joshua Goldwyn
  5. Nace L Golding
  6. Philip H Smith
  7. Philip Joris
(2021)
Glycinergic axonal inhibition subserves acute spatial sensitivity to sudden increases in sound intensity
eLife 10:e62183.
https://doi.org/10.7554/eLife.62183

Share this article

https://doi.org/10.7554/eLife.62183

Further reading

    1. Neuroscience
    Maëliss Jallais, Marco Palombo
    Research Article

    This work proposes µGUIDE: a general Bayesian framework to estimate posterior distributions of tissue microstructure parameters from any given biophysical model or signal representation, with exemplar demonstration in diffusion-weighted magnetic resonance imaging. Harnessing a new deep learning architecture for automatic signal feature selection combined with simulation-based inference and efficient sampling of the posterior distributions, µGUIDE bypasses the high computational and time cost of conventional Bayesian approaches and does not rely on acquisition constraints to define model-specific summary statistics. The obtained posterior distributions allow to highlight degeneracies present in the model definition and quantify the uncertainty and ambiguity of the estimated parameters.

    1. Neuroscience
    Bharath Krishnan, Noah Cowan
    Insight

    Mice can generate a cognitive map of an environment based on self-motion signals when there is a fixed association between their starting point and the location of their goal.