Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis

  1. Kazuhide S Okuda
  2. Mikaela S Keyser
  3. David B Gurevich
  4. Caterina Sturtzel
  5. Elizabeth A Mason
  6. Scott Paterson
  7. Huijun Chen
  8. Mark Scott
  9. Nicholas D Condon
  10. Paul Martin
  11. Martin Distel
  12. Benjamin M Hogan  Is a corresponding author
  1. Peter MacCallum Cancer Centre, Australia
  2. University of Queensland, Australia
  3. University of Bristol, United Kingdom
  4. St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Austria

Abstract

The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation and migration. Erk is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response however, involves a Vegfr-dependent mechanism that initiates concomitant with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kazuhide S Okuda

    Program in Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8060-0377
  2. Mikaela S Keyser

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. David B Gurevich

    Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Caterina Sturtzel

    Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Elizabeth A Mason

    Program in Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott Paterson

    Program in Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Huijun Chen

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark Scott

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicholas D Condon

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Paul Martin

    Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Martin Distel

    Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5942-0817
  12. Benjamin M Hogan

    Program in Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    For correspondence
    ben.hogan@petermac.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0651-7065

Funding

National Health and Medical Research Council (1164734)

  • Benjamin M Hogan

National Health and Medical Research Council (1165117)

  • Benjamin M Hogan

Austrian Research Promotion Agency (7640628)

  • Martin Distel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish work was conducted in accordance with the guidelines of the animal ethics committees at the University of Queensland (AE54297), University of Melbourne, Peter MacCallum Cancer Centre (E634 and E643), University of Bristol (3003318), and the Children's Cancer Research Institute (GZ:565304/2014/6 and GZ:534619/2014/4).

Copyright

© 2021, Okuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,373
    views
  • 488
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kazuhide S Okuda
  2. Mikaela S Keyser
  3. David B Gurevich
  4. Caterina Sturtzel
  5. Elizabeth A Mason
  6. Scott Paterson
  7. Huijun Chen
  8. Mark Scott
  9. Nicholas D Condon
  10. Paul Martin
  11. Martin Distel
  12. Benjamin M Hogan
(2021)
Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis
eLife 10:e62196.
https://doi.org/10.7554/eLife.62196

Share this article

https://doi.org/10.7554/eLife.62196

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Elise S Bruguera, Jacob P Mahoney, William I Weis
    Research Article

    Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.

    1. Developmental Biology
    Pablo Sanchez Bosch, Bomsoo Cho, Jeffrey D Axelrod
    Research Article

    The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. ‘Would-be’ winners that lack Fmi are unable to overproliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.