Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis

  1. Kazuhide S Okuda
  2. Mikaela S Keyser
  3. David B Gurevich
  4. Caterina Sturtzel
  5. Elizabeth A Mason
  6. Scott Paterson
  7. Huijun Chen
  8. Mark Scott
  9. Nicholas D Condon
  10. Paul Martin
  11. Martin Distel
  12. Benjamin M Hogan  Is a corresponding author
  1. Peter MacCallum Cancer Centre, Australia
  2. University of Queensland, Australia
  3. University of Bristol, United Kingdom
  4. St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Austria

Abstract

The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation and migration. Erk is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response however, involves a Vegfr-dependent mechanism that initiates concomitant with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kazuhide S Okuda

    Program in Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8060-0377
  2. Mikaela S Keyser

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. David B Gurevich

    Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Caterina Sturtzel

    Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Elizabeth A Mason

    Program in Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Scott Paterson

    Program in Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Huijun Chen

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark Scott

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicholas D Condon

    Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Paul Martin

    Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Martin Distel

    Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5942-0817
  12. Benjamin M Hogan

    Program in Organogenesis and Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
    For correspondence
    ben.hogan@petermac.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0651-7065

Funding

National Health and Medical Research Council (1164734)

  • Benjamin M Hogan

National Health and Medical Research Council (1165117)

  • Benjamin M Hogan

Austrian Research Promotion Agency (7640628)

  • Martin Distel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish work was conducted in accordance with the guidelines of the animal ethics committees at the University of Queensland (AE54297), University of Melbourne, Peter MacCallum Cancer Centre (E634 and E643), University of Bristol (3003318), and the Children's Cancer Research Institute (GZ:565304/2014/6 and GZ:534619/2014/4).

Copyright

© 2021, Okuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,483
    views
  • 498
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kazuhide S Okuda
  2. Mikaela S Keyser
  3. David B Gurevich
  4. Caterina Sturtzel
  5. Elizabeth A Mason
  6. Scott Paterson
  7. Huijun Chen
  8. Mark Scott
  9. Nicholas D Condon
  10. Paul Martin
  11. Martin Distel
  12. Benjamin M Hogan
(2021)
Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis
eLife 10:e62196.
https://doi.org/10.7554/eLife.62196

Share this article

https://doi.org/10.7554/eLife.62196

Further reading

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.

    1. Developmental Biology
    Alexandra V Bruter, Ekaterina A Varlamova ... Victor V Tatarskiy
    Research Article

    CDK8 and CDK19 paralogs are regulatory kinases associated with the transcriptional Mediator complex. We have generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout. Cdk8/19 double knockout (iDKO) males, but not single Cdk8 or Cdk19 KO, had an atrophic reproductive system and were infertile. The iDKO males lacked postmeiotic spermatids and spermatocytes after meiosis I pachytene. Testosterone levels were decreased whereas the amounts of the luteinizing hormone were unchanged. Single-cell RNA sequencing showed marked differences in the expression of steroidogenic genes (such as Cyp17a1, Star, and Fads) in Leydig cells concomitant with alterations in Sertoli cells and spermatocytes, and were likely associated with an impaired synthesis of steroids. Star and Fads were also downregulated in cultured Leydig cells after iDKO. The treatment of primary Leydig cell culture with a CDK8/19 inhibitor did not induce the same changes in gene expression as iDKO, and a prolonged treatment of mice with a CDK8/19 inhibitor did not affect the size of testes. iDKO, in contrast to the single knockouts or treatment with a CDK8/19 kinase inhibitor, led to depletion of cyclin C (CCNC), the binding partner of CDK8/19 that has been implicated in CDK8/19-independent functions. This suggests that the observed phenotype was likely mediated through kinase-independent activities of CDK8/19, such as CCNC stabilization.