The essential role of Dnmt1 in gametogenesis in the large milkweed bug Oncopeltus fasciatus

Abstract

Given the importance of DNA methylation in protection of the genome against transposable elements and transcriptional regulation in other taxonomic groups, the diversity in both levels and patterns of DNA methylation in the insects raises questions about its function and evolution. We show that the maintenance DNA methyltransferase, DNMT1, affects meiosis and is essential to fertility in milkweed bugs, Oncopeltus fasciatus, while DNA methylation is not required in somatic cells. Our results support the hypothesis that Dnmt1 is required for the transition of germ cells to gametes in O. fasciatus and that this function is conserved in male and female gametogenesis. They further suggest that DNMT1 has a function independent of DNA methylation in germ cells. Our results raise the question of how a gene so critical in fitness across multiple insect species can have diverged widely across the insect tree of life.

Data availability

Source data files have been provided for Figures 2, 3, 4, and 6

Article and author information

Author details

  1. Joshua T Washington

    Entomology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Katelyn R Cavender

    Entomology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashley U Amukamara

    Entomology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elizabeth C McKinney

    Entomology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert J Schmitz

    Department of Genetics, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7538-6663
  6. Patricia J Moore

    Entomology, University of Georgia, Athens, United States
    For correspondence
    pjmoore@uga.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9802-7217

Funding

The authors declare that there was no funding for this work.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Version history

  1. Received: August 17, 2020
  2. Accepted: April 9, 2021
  3. Accepted Manuscript published: April 12, 2021 (version 1)
  4. Version of Record published: April 23, 2021 (version 2)

Copyright

© 2021, Washington et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 980
    views
  • 135
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua T Washington
  2. Katelyn R Cavender
  3. Ashley U Amukamara
  4. Elizabeth C McKinney
  5. Robert J Schmitz
  6. Patricia J Moore
(2021)
The essential role of Dnmt1 in gametogenesis in the large milkweed bug Oncopeltus fasciatus
eLife 10:e62202.
https://doi.org/10.7554/eLife.62202

Share this article

https://doi.org/10.7554/eLife.62202

Further reading

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.