Correlating STED and synchrotron XRF nano-imaging unveils cosegregation of metals and cytoskeleton proteins in dendrites

  1. Florelle Domart
  2. Peter Cloetens
  3. Stéphane Roudeau
  4. Asuncion Carmona
  5. Emeline Verdier
  6. Daniel Choquet
  7. Richard Ortega  Is a corresponding author
  1. CNRS, University of Bordeaux, France
  2. European Synchrotron Radiation Facility (ESRF), France
  3. Université de Bordeaux, France

Abstract

Zinc and copper are involved in neuronal differentiation and synaptic plasticity but the molecular mechanisms behind these processes are still elusive due in part to the difficulty of imaging trace metals together with proteins at the synaptic level. We correlate stimulated emission depletion microscopy of proteins and synchrotron X-ray fluorescence imaging of trace metals, both performed with 40 nm spatial resolution, on primary rat hippocampal neurons. We reveal the co-localization at the nanoscale of zinc and tubulin in dendrites with a molecular ratio of about one zinc atom per tubulin-αβ dimer. We observe the co-segregation of copper and F-actin within the nano-architecture of dendritic protrusions. In addition, zinc chelation causes a decrease in the expression of cytoskeleton proteins in dendrites and spines. Overall, these results indicate new functions for zinc and copper in the modulation of the cytoskeleton morphology in dendrites, a mechanism associated to neuronal plasticity and memory formation.

Data availability

Synchrotron datasets (SXRF and PCI images) are available from the ESRF data portal in open mode with the following DOI numbers: doi:10.15151/ESRF-ES-162248067 (https://doi.esrf.fr/10.15151/ESRF-ES-162248067) and doi:10.15151/ESRF-ES-101127303 (https://doi.esrf.fr/10.15151/ESRF-ES-101127303). Figure 1-source data 1. Data are available at https://doi.esrf.fr/10.15151/ESRF-ES-162248067 datasets M20_zone67_nfp3_015nm and M20_zone67_fine01. Table 1-source data 1. Table1 Source data 1.xlsx. Figure 2-source data 1. Data are available at https://doi.esrf.fr/10.15151/ESRF-ES-101127303 datasets TA15_neu64_fine2 and TA15_neu64_fine5. Figure 3-source data 1. Data are available at https://doi.esrf.fr/10.15151/ESRF-ES-162248067 datasets M8_neur43_sted44_nfp_015nm and M8_neu43_fine03. Figure 4-source data 1. Data are available at https://doi.esrf.fr/10.15151/ESRF-ES-101127303 dataset TA15_neu71_fine01. Figure 4-source data 2. Data for Pearson's correlation coefficients are included in Figure 4 source data 2.zip Figure 5-source data 1. Data are available at https://doi.esrf.fr/10.15151/ESRF-ES-101127303 datasets TA15- neu 26 fine 01 and TA15_neu23_fine02. Figure 6-source data 1. Data for F-actin are available in file Figure 6 source data 1.xlxs. Figure 6-source data 2. Data for β-tubulin are available in file Figure 6 source data 2.xlxs. Figure 2-source data 2. Synchrotron XRF data for Figure 2-figure supplement 1 are available at https://doi.esrf.fr/10.15151/ESRF-ES-101127303 datasets TA15_neu64_fine4 and TA15_neu64_fine3. Figure 2-source data 3. Data for Pearson's correlation coefficients of Figure 2-figure supplement 1 panel h are provided in Figure 2 source data 3.zip Figure 2-source data 4. Data for Pearson's correlation coefficients of of Figure 2-figure supplement 1 panel o are provided in Figure 2 source data 4.zip Figure3-source data 2. Synchrotron XRF data for Figure 3-figure supplement 1 are available at https://doi.esrf.fr/10.15151/ESRF-ES-101127303 dataset SiTA1_neu7_fine01. Figure 4-figure source data 2. Synchrotron XRF and PCI data for Figure 4-figure supplement 1 are available at https://doi.esrf.fr/10.15151/ESRF-ES-162248067 datasets M20_zone67_fine01, M20_zone67_fine02, and M20_zone67_fine06. Figure 5-source data 2. Synchrotron XRF data for Figure 5-figure supplement 1 are available at https://doi.esrf.fr/10.15151/ESRF-ES-162248067 datasets M20_zone67_nfp3_015nm and M20_zone67_fine01. Figure 6-source data 3. F-actin data for Figure 6-figure supplement 1 are available in file Figure 6 source data 3.xlxs. Figure 6-source data 4. Tubulin data for Figure 6-figure supplement 1 are available in file Figure6 source data 4.xlxs. Supplementary File 1. Raw data provided in Source Data 1, file Source data 1.xlsx.

The following data sets were generated

Article and author information

Author details

  1. Florelle Domart

    CENBG, CNRS, University of Bordeaux, Gradignan, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Peter Cloetens

    ID16A beamline, European Synchrotron Radiation Facility (ESRF), Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Stéphane Roudeau

    CENBG, CNRS, University of Bordeaux, Gradignan, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Asuncion Carmona

    CENBG, CNRS, University of Bordeaux, Gradignan, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Emeline Verdier

    Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Choquet

    Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4726-9763
  7. Richard Ortega

    CENBG, CNRS, University of Bordeaux, Gradignan, France
    For correspondence
    ortega@cenbg.in2p3.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1692-5406

Funding

Centre National de la Recherche Scientifique

  • Richard Ortega

H2020 European Research Council

  • Daniel Choquet

IDEX Bordeaux

  • Richard Ortega

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Version history

  1. Received: August 21, 2020
  2. Accepted: December 7, 2020
  3. Accepted Manuscript published: December 8, 2020 (version 1)
  4. Version of Record published: January 6, 2021 (version 2)

Copyright

© 2020, Domart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,463
    views
  • 276
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florelle Domart
  2. Peter Cloetens
  3. Stéphane Roudeau
  4. Asuncion Carmona
  5. Emeline Verdier
  6. Daniel Choquet
  7. Richard Ortega
(2020)
Correlating STED and synchrotron XRF nano-imaging unveils cosegregation of metals and cytoskeleton proteins in dendrites
eLife 9:e62334.
https://doi.org/10.7554/eLife.62334

Share this article

https://doi.org/10.7554/eLife.62334

Further reading

    1. Neuroscience
    MinHyuk Lee, Se Hoon Park ... KyeongJin Kang
    Research Article

    Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.