Accelerating with FlyBrainLab the discovery of the functional logic of the Drosophila brain in the connectomic era

  1. Aurel A Lazar  Is a corresponding author
  2. Tingkai Liu
  3. Mehmet Kerem Turkcan
  4. Yiyin Zhou
  1. Columbia University, United States

Abstract

In recent years, a wealth of Drosophila neuroscience data have become available including cell type, connectome/synaptome datasets for both the larva and adult fly. To facilitate integration across data modalities and to accelerate the understanding of the functional logic of the fly brain, we have developed FlyBrainLab, a unique open-source computing platform that integrates 3D exploration and visualization of diverse datasets with interactive exploration of the functional logic of modeled executable brain circuits. FlyBrainLab's User Interface, Utilities Libraries and Circuit Libraries bring together neuroanatomical, neurogenetic and electrophysiological datasets with computational models of different researchers for validation and comparison within the same platform. Seeking to transcend the limitations of the connectome/synaptome, FlyBrainLab also provides libraries for molecular transduction arising in sensory coding in vision/olfaction. Together with sensory neuron activity data, these libraries serve as entry points for the exploration, analysis, comparison and evaluation of circuit functions of the fruit fly brain.

Data availability

Code Availability and InstallationStable and tested FlyBrainLab installation instructions for user-side components and utility libraries are available at https://github.com/FlyBrainLab/FlyBrainLab for Linux, MacOS and Windows. The installation and use of FlyBrainLab does not require a GPU, but a service-side backend must be running, for example, on a cloud service, that the user-side of FlyBrainLab can connect to. By default, the user-side-only installation will access the backend services hosted on our public servers. Note that users do not have write permission to the NeuroArch Database, nor will they be able to access a Neurokernel Server for execution. The server-side backend codebase is publicly available at https://github.com/fruitflybrain and https://github.com/neurokernel.A full installation of FlyBrainLab, including all backend and frontend components, is available as a Docker image at https://hub.docker.com/r/fruitflybrain/fbl. The image requires a Linux host with at least 1 CUDA-enabled GPU and the nvidia-docker package (https://github.com/NVIDIA/nvidia-docker) installed. For a custom installation of the complete FlyBrainLab platform, a shell script is available at https://github.com/FlyBrainLab/FlyBrainLab.To help users get started, a number of tutorials are available written as Jupyter notebooks at https://github.com/FlyBrainLab/Tutorials, including a reference to English queries at https://github.com/FlyBrainLab/Tutorials/blob/master/tutorials/getting_started/1b_nlp_queries.ipynb. An overview of the FlyBrainLab resources is available at https://github.com/FlyBrainLab/FlyBrainLab/wiki/FlyBrainLab-Resources.Data AvailabilityThe NeuroArch Database created from publicly available FlyCircuit, Hemibrain and Larva L1EM datasets can be downloaded from https://github.com/FlyBrainLab/dataset. The same repository provides Jupyter notebooks for loading publicly available datasets, such as the FlyCircuit dataset with inferred connectivity, the Hemibrain dataset and the Larva L1 EM dataset, into the NeuroArch Database.

The following previously published data sets were used

Article and author information

Author details

  1. Aurel A Lazar

    Department of Electrical Engineering, Columbia University, New York, United States
    For correspondence
    aurel@ee.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4261-8709
  2. Tingkai Liu

    Department of Electrical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3075-7648
  3. Mehmet Kerem Turkcan

    Department of Electrical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9273-7293
  4. Yiyin Zhou

    Department of Electrical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4618-4039

Funding

Air Force Office of Scientific Research (FA9550-16-1-0410)

  • Mehmet Kerem Turkcan

Defense Advanced Research Projects Agency (HR0011-19-9-0035)

  • Aurel A Lazar
  • Tingkai Liu
  • Mehmet Kerem Turkcan
  • Yiyin Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Lazar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,616
    views
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.62362

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.