Emergence of non-canonical parvalbumin-containing interneurons in hippocampus of a murine model of Type I lissencephaly

  1. Tyler G Ekins
  2. Vivek Mahadevan
  3. Yajun Zhang
  4. James A D'Amour
  5. Gülcan Akgül
  6. Timothy J Petros
  7. Chris J McBain  Is a corresponding author
  1. Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States

Abstract

Type I lissencephaly is a neuronal migration disorder caused by haploinsuffiency of the PAFAH1B1 (mouse: Pafah1b1) gene and is characterized by brain malformation, developmental delays, and epilepsy. Here, we investigate the impact of Pafah1b1 mutation on the cellular migration, morphophysiology, microcircuitry and transcriptomics of mouse hippocampal CA1 parvalbumin-containing inhibitory interneurons (PV+INTs). We find that WT PV+INTs consist of two physiological subtypes (80% fast-spiking (FS), 20% non-fast-spiking (NFS)) and four morphological subtypes. We find that cell-autonomous mutations within interneurons disrupts morphophysiological development of PV+INTs and results in the emergence of a non-canonical 'intermediate spiking (IS)' subset of PV+INTs. We also find that now dominant IS/NFS cells are prone to entering depolarization block, causing them to temporarily lose the ability to initiate action potentials and control network excitation, potentially promoting seizures. Finally, single-cell nuclear RNAsequencing of PV+INTs revealed several misregulated genes related to morphogenesis, cellular excitability, and synapse formation.

Data availability

Data generated are included in the manuscript, supporting files, and source data.

The following previously published data sets were used

Article and author information

Author details

  1. Tyler G Ekins

    Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9801-4843
  2. Vivek Mahadevan

    Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0805-827X
  3. Yajun Zhang

    Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James A D'Amour

    Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8144-3692
  5. Gülcan Akgül

    Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy J Petros

    Cellular and Molecular Neurodevelopment, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chris J McBain

    Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
    For correspondence
    mcbainc@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5909-0157

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (Intramural Resarch Award)

  • Chris J McBain

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were conducted in accordance with animal protocols approved by the National Institutes of Health (ASP# 17-045).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,135
    views
  • 260
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tyler G Ekins
  2. Vivek Mahadevan
  3. Yajun Zhang
  4. James A D'Amour
  5. Gülcan Akgül
  6. Timothy J Petros
  7. Chris J McBain
(2020)
Emergence of non-canonical parvalbumin-containing interneurons in hippocampus of a murine model of Type I lissencephaly
eLife 9:e62373.
https://doi.org/10.7554/eLife.62373

Share this article

https://doi.org/10.7554/eLife.62373

Further reading

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.