Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron

  1. Xinhuai Liu
  2. Shel-Hwa Yeo
  3. H James McQuillan
  4. Michel K Herde
  5. Sabine Hessler
  6. Isaiah Cheong
  7. Robert Porteous
  8. Allan Edward Herbison  Is a corresponding author
  1. University of Otago, New Zealand
  2. University of Cambridge, United Kingdom

Abstract

The necessity and functional significance of neurotransmitter co-transmission remains unclear. The glutamatergic 'KNDy' neurons co-express kisspeptin, neurokinin B (NKB) and dynorphin and exhibit a highly stereotyped synchronized behavior that reads out to the gonadotropin-releasing hormone (GnRH) neuron dendrons to drive episodic hormone secretion. Using expansion microscopy, we show that KNDy neurons make abundant close, non-synaptic appositions with the GnRH neuron dendron. Electrophysiology and confocal GCaMP6 imaging demonstrated that, despite all three neuropeptides being released from KNDy terminals, only kisspeptin was able to activate the GnRH neuron dendron. Mice with a selective deletion of kisspeptin from KNDy neurons failed to exhibit pulsatile hormone secretion but maintained synchronized episodic KNDy neuron behavior thought to depend on recurrent NKB and dynorphin transmission. This indicates that KNDy neurons drive episodic hormone secretion through highly redundant neuropeptide co-transmission orchestrated by differential postsynaptic neuropeptide receptor expression at the GnRH neuron dendron and KNDy neuron.

Data availability

All data generated or analysed during this study are included in the manuscript .

Article and author information

Author details

  1. Xinhuai Liu

    Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  2. Shel-Hwa Yeo

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. H James McQuillan

    Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Michel K Herde

    Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2324-2083
  5. Sabine Hessler

    Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4177-4825
  6. Isaiah Cheong

    Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  7. Robert Porteous

    Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  8. Allan Edward Herbison

    Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    aeh36@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9615-3022

Funding

New Zealand Health Research Council

  • Allan Edward Herbison

Wellcome Trust

  • Allan Edward Herbison

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal handling and experimental protocols were undertaken as approved by the Animal Welfare Ethics Committees of the University of Otago, New Zealand (96/2017) or the University of Cambridge, UK (P174441DE).

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,834
    views
  • 304
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinhuai Liu
  2. Shel-Hwa Yeo
  3. H James McQuillan
  4. Michel K Herde
  5. Sabine Hessler
  6. Isaiah Cheong
  7. Robert Porteous
  8. Allan Edward Herbison
(2021)
Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron
eLife 10:e62455.
https://doi.org/10.7554/eLife.62455

Share this article

https://doi.org/10.7554/eLife.62455

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.

    1. Neuroscience
    Choongheon Lee, Mohammad Shokrian ... Jong-Hoon Nam
    Research Article

    We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid–structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.