Effects of visual inputs on neural dynamics for coding of location and running speed in medial entorhinal cortex

Abstract

Neuronal representations of spatial location and movement speed in the medial entorhinal cortex during the 'active' theta state of the brain are important for memory-guided navigation and rely on visual inputs. However, little is known about how visual inputs change neural dynamics as a function of running speed and time. By manipulating visual inputs in mice, we demonstrate that changes in spatial stability of grid cell firing correlate with changes in a proposed speed signal by local field potential theta frequency. In contrast, visual inputs do not alter the running speed-dependent gain in neuronal firing rates. Moreover, we provide evidence that sensory inputs other than visual inputs can support grid cell firing, though less accurately, in complete darkness. Finally, changes in spatial accuracy of grid cell firing on a 10 s time scale suggest that grid cell firing is a function of velocity signals integrated over past time.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Matlab code for Figure 4 is provided on the laboratory's GitHub page (https://github.com/hasselmonians/light-modulation and https://github.com/hasselmonians/mle_rhythmicity). Source data files have been provided for Figures 2, 3, 4, 5, and 6.

Article and author information

Author details

  1. Holger Dannenberg

    Psychological & Brain Sciences, Boston University, Boston, United States
    For correspondence
    hdannenb@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0340-0128
  2. Hallie Lazaro

    Psychological & Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pranav Nambiar

    Psychological & Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alec Hoyland

    Psychological & Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4732-5932
  5. Michael E. Hasselmo

    Psychological & Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9925-6377

Funding

National Institutes of Health (R01MH60013)

  • Holger Dannenberg
  • Hallie Lazaro
  • Pranav Nambiar
  • Alec Hoyland
  • Michael E. Hasselmo

National Institutes of Health (R01MH120073)

  • Holger Dannenberg
  • Hallie Lazaro
  • Pranav Nambiar
  • Alec Hoyland
  • Michael E. Hasselmo

National Institutes of Health (R01MH052090)

  • Holger Dannenberg
  • Hallie Lazaro
  • Pranav Nambiar
  • Alec Hoyland
  • Michael E. Hasselmo

National Institutes of Health (K99NS116129)

  • Holger Dannenberg

Office of Naval Research (MURI N00014-16-1-2832)

  • Holger Dannenberg
  • Hallie Lazaro
  • Pranav Nambiar
  • Alec Hoyland
  • Michael E. Hasselmo

Office of Naval Research (MURI N00014-19-1-2571)

  • Holger Dannenberg
  • Hallie Lazaro
  • Pranav Nambiar
  • Alec Hoyland
  • Michael E. Hasselmo

Office of Naval Research (DURIP N00014-17-1-2304)

  • Holger Dannenberg
  • Hallie Lazaro
  • Pranav Nambiar
  • Alec Hoyland
  • Michael E. Hasselmo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adrien Peyrache, McGill University, Canada

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All handling of animals and experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) for the Charles River Campus at Boston University under protocol #16-008 . All surgery was performed under isoflurane anesthesia and buprenorphine analgesia, and every effort was made to minimize suffering.

Version history

  1. Received: August 26, 2020
  2. Accepted: December 9, 2020
  3. Accepted Manuscript published: December 10, 2020 (version 1)
  4. Version of Record published: December 30, 2020 (version 2)

Copyright

© 2020, Dannenberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,178
    views
  • 271
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Holger Dannenberg
  2. Hallie Lazaro
  3. Pranav Nambiar
  4. Alec Hoyland
  5. Michael E. Hasselmo
(2020)
Effects of visual inputs on neural dynamics for coding of location and running speed in medial entorhinal cortex
eLife 9:e62500.
https://doi.org/10.7554/eLife.62500

Share this article

https://doi.org/10.7554/eLife.62500

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.