ß2-Arrestin germline knockout does not attenuate opioid respiratory depression

  1. Iris Bachmutsky
  2. Xin Paul Wei
  3. Adelae Durand
  4. Kevin Yackle  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

Opioids are perhaps the most effective analgesics in medicine. However, between 1999 to 2018, over 400,000 people in the United States died from opioid overdose. Excessive opioids make breathing lethally slow and shallow, a side-effect called opioid induced respiratory depression. This doubled-edged sword has sparked the desire to develop novel therapeutics that provide opioid-like analgesia without depressing breathing. One such approach has been the design of so-called 'biased agonists' that signal through some, but not all pathways downstream of the µ-opioid receptor (MOR), the target of morphine and other opioid analgesics. This rationale stems from a study suggesting that MOR-induced ß2-arrestin dependent signaling is responsible for opioid respiratory depression, whereas adenylyl cyclase inhibition produces analgesia. To verify this important result that motivated the 'biased agonist' approach, we re-examined breathing in ß2-arrestin deficient mice and instead find no connection between ß2-arrestin and opioid respiratory depression. This result suggests that any attenuated effect of 'biased agonists' on breathing is through an as-yet defined mechanism.

Data availability

The data generated in Figures 2-4 are provided in the source files.

Article and author information

Author details

  1. Iris Bachmutsky

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xin Paul Wei

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Adelae Durand

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kevin Yackle

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Kevin.Yackle@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1870-2759

Funding

NIH Office of the Director (DP5-OD023116)

  • Kevin Yackle

Program for Breakthrough Biomedical Research

  • Kevin Yackle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with national and institutional guidelines with standard precautions to minimize animal stress and the number of animals used in each experiment. All animal protocols have been approved by the UCSF 'Office of Research'.approval number AN181239.

Copyright

© 2021, Bachmutsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,117
    views
  • 320
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iris Bachmutsky
  2. Xin Paul Wei
  3. Adelae Durand
  4. Kevin Yackle
(2021)
ß2-Arrestin germline knockout does not attenuate opioid respiratory depression
eLife 10:e62552.
https://doi.org/10.7554/eLife.62552

Share this article

https://doi.org/10.7554/eLife.62552

Further reading

    1. Neuroscience
    Eun Joo Kim, Mi-Seon Kong ... Jeansok John Kim
    Research Article

    Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an ‘approach food-avoid predator’ task, focusing on the responsiveness of dPAG and BLA neurons to a rapidly approaching robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory-defensive functioning.

    1. Neuroscience
    Yangang Li, Xinyun Zhu ... Yueming Wang
    Research Article

    In motor cortex, behaviorally relevant neural responses are entangled with irrelevant signals, which complicates the study of encoding and decoding mechanisms. It remains unclear whether behaviorally irrelevant signals could conceal some critical truth. One solution is to accurately separate behaviorally relevant and irrelevant signals at both single-neuron and single-trial levels, but this approach remains elusive due to the unknown ground truth of behaviorally relevant signals. Therefore, we propose a framework to define, extract, and validate behaviorally relevant signals. Analyzing separated signals in three monkeys performing different reaching tasks, we found neural responses previously considered to contain little information actually encode rich behavioral information in complex nonlinear ways. These responses are critical for neuronal redundancy and reveal movement behaviors occupy a higher-dimensional neural space than previously expected. Surprisingly, when incorporating often-ignored neural dimensions, behaviorally relevant signals can be decoded linearly with comparable performance to nonlinear decoding, suggesting linear readout may be performed in motor cortex. Our findings prompt that separating behaviorally relevant signals may help uncover more hidden cortical mechanisms.