Circuits for integrating learned and innate valences in the insect brain
Abstract
Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all Mushroom Body output neurons (encoding learned valences) and characterized their patterns of interaction with Lateral Horn neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent Mushroom Body and Lateral Horn inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for Figures 2 to 6.
Article and author information
Author details
Funding
Howard Hughes Medical Institute
- Claire Eschbach
- Akira Fushiki
- Michael Winding
- Bruno Afonso
- Ingrid V Andrade
- Benjamin T Cocanougher
- Javier Valdes-Aleman
- James W Truman
- Albert Cardona
- Marta Zlatic
European Research Council (RG95162)
- Claire Eschbach
- Michael Winding
- Marta Zlatic
Wellcome Trust (RG86459)
- Marta Zlatic
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Eschbach et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,742
- views
-
- 562
- downloads
-
- 38
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.