Circuits for integrating learned and innate valences in the insect brain

  1. Claire Eschbach  Is a corresponding author
  2. Akira Fushiki
  3. Michael Winding
  4. Bruno Afonso
  5. Ingrid V Andrade
  6. Benjamin T Cocanougher
  7. Katharina Eichler
  8. Ruben Gepner
  9. Guangwei Si
  10. Javier Valdes-Aleman
  11. Richard D Fetter
  12. Marc Gershow
  13. Gregory SXE Jefferis
  14. Aravinthan DT Samuel
  15. James W Truman
  16. Albert Cardona  Is a corresponding author
  17. Marta Zlatic  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Columbia University, Zuckerman Institute, United States
  3. Howard Hughes Medical Institute, United States
  4. University of Puerto Rico Medical Sciences Campus, Puerto Rico
  5. New York University, United States
  6. Harvard University, United States
  7. University of California, United States
  8. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all Mushroom Body output neurons (encoding learned valences) and characterized their patterns of interaction with Lateral Horn neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent Mushroom Body and Lateral Horn inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for Figures 2 to 6.

Article and author information

Author details

  1. Claire Eschbach

    Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ce394@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8092-3440
  2. Akira Fushiki

    Neuroscience, Columbia University, Zuckerman Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7987-6405
  3. Michael Winding

    Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Bruno Afonso

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ingrid V Andrade

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Benjamin T Cocanougher

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0648-554X
  7. Katharina Eichler

    Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7833-8621
  8. Ruben Gepner

    Department of Physics, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Guangwei Si

    Department of Physics and Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Javier Valdes-Aleman

    Molecular Cell and Developmental Biology, University of California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Richard D Fetter

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-100X
  12. Marc Gershow

    Department of Physics, Center for Neural Science, Neuroscience Institute, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7528-6101
  13. Gregory SXE Jefferis

    Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0587-9355
  14. Aravinthan DT Samuel

    Physics, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1672-8720
  15. James W Truman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9209-5435
  16. Albert Cardona

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ac2040@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4941-6536
  17. Marta Zlatic

    Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    mzlatic@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3149-2250

Funding

Howard Hughes Medical Institute

  • Claire Eschbach
  • Akira Fushiki
  • Michael Winding
  • Bruno Afonso
  • Ingrid V Andrade
  • Benjamin T Cocanougher
  • Javier Valdes-Aleman
  • James W Truman
  • Albert Cardona
  • Marta Zlatic

European Research Council (RG95162)

  • Claire Eschbach
  • Michael Winding
  • Marta Zlatic

Wellcome Trust (RG86459)

  • Marta Zlatic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Eschbach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,537
    views
  • 550
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claire Eschbach
  2. Akira Fushiki
  3. Michael Winding
  4. Bruno Afonso
  5. Ingrid V Andrade
  6. Benjamin T Cocanougher
  7. Katharina Eichler
  8. Ruben Gepner
  9. Guangwei Si
  10. Javier Valdes-Aleman
  11. Richard D Fetter
  12. Marc Gershow
  13. Gregory SXE Jefferis
  14. Aravinthan DT Samuel
  15. James W Truman
  16. Albert Cardona
  17. Marta Zlatic
(2021)
Circuits for integrating learned and innate valences in the insect brain
eLife 10:e62567.
https://doi.org/10.7554/eLife.62567

Share this article

https://doi.org/10.7554/eLife.62567

Further reading

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.