Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements

  1. Allison E Hamilos  Is a corresponding author
  2. Giulia Spedicato
  3. Ye Hong
  4. Fangmiao Sun
  5. Yulong Li
  6. John Assad
  1. Harvard Medical School, United States
  2. Peking University School of Life Science, China
  3. Peiking University School of Life Sciences, China

Abstract

Clues from human movement disorders have long suggested that the neurotransmitter dopamine plays a role in motor control, but how the endogenous dopaminergic system influences movement is unknown. Here we examined the relationship between dopaminergic signaling and the timing of reward-related movements in mice. Animals were trained to initiate licking after a self-timed interval following a start-timing cue; reward was delivered in response to movements initiated after a criterion time. The movement time was variable from trial-to-trial, as expected from previous studies. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time on single trials. Steeply rising signals preceded early lick-initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movements. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of movement initiation, whereas inhibition caused late-shifting, as if modulating the probability of movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation on single trials. We propose that ramping dopaminergic signals, likely encoding dynamic reward expectation, can modulate the decision of when to move.

Data availability

All datasets supporting the findings of this study are publicly available (DOI: 10.5281/zenodo.4062749). Source data files have been provided for all figures.

The following data sets were generated

Article and author information

Author details

  1. Allison E Hamilos

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    allisonhamilos@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9486-0017
  2. Giulia Spedicato

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Ye Hong

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Fangmiao Sun

    State Key Laboratory of Membrane Biology, Peking University School of Life Science, Beijing, China
    Competing interests
    No competing interests declared.
  5. Yulong Li

    State Key Laboratory of Membrane Biology, Peiking University School of Life Sciences, Beijing, China
    Competing interests
    No competing interests declared.
  6. John Assad

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    John Assad, co-founder of OptogeniX, which produces the tapered optical fibers used in some experiments..

Funding

National Institutes of Health (UF-NS108177)

  • John Assad

National Institutes of Health (U19 NS113201)

  • John Assad

National Institutes of Health (EY-12196)

  • John Assad

Lefler Predoctoral Fellowship (n/a)

  • Allison E Hamilos

Stuart H.Q. and Victoria Quan Predoctoral Fellowship (n/a)

  • Allison E Hamilos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments and protocols were approved by the Harvard Institutional Animal Care and Use Committee (IACUC protocol #05098, Animal Welfare Assurance Number #A3431-01) and were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Surgeries were conducted under aseptic conditions with isoflurane anesthesia, and every effort was taken to minimize suffering.

Copyright

© 2021, Hamilos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,279
    views
  • 766
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Allison E Hamilos
  2. Giulia Spedicato
  3. Ye Hong
  4. Fangmiao Sun
  5. Yulong Li
  6. John Assad
(2021)
Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements
eLife 10:e62583.
https://doi.org/10.7554/eLife.62583

Share this article

https://doi.org/10.7554/eLife.62583

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.