miR-125-chinmo pathway regulates dietary restriction dependent enhancement of lifespan in Drosophila

  1. Manish Pandey
  2. Sakshi Bansal
  3. Sudipta Bar
  4. Amit Kumar Yadav
  5. Nicholas S Sokol
  6. Jason M Tennessen
  7. Pankaj Kapahi  Is a corresponding author
  8. Geetanjali Chawla  Is a corresponding author
  1. Regional Centre for Biotechnology, India
  2. Buck Institute for Research on Aging, United States
  3. Translational Health Science and Technology Institute, India
  4. Indiana University, United States

Abstract

Dietary restriction (DR) extends healthy lifespan in diverse species. Age and nutrient-related changes in the abundance of microRNAs (miRNAs) and their processing factors have been linked to organismal longevity. However, the mechanisms by which they modulate lifespan and the tissue-specific role of miRNA-mediated networks in DR-dependent enhancement of lifespan remains largely unexplored. We show that two neuronally enriched and highly conserved microRNAs, miR-125 and let-7 mediate the DR response in Drosophila melanogaster. Functional characterization of miR-125 demonstrates its role in neurons while its target chinmo acts both in neurons and the fat body to modulate fat metabolism and longevity. Proteomic analysis revealed that Chinmo exerts its DR effects by regulating the expression of FATP, CG2017, CG9577, CG17554, CG5009, CG8778, CG9527, and FASN1. Our findings identify miR-125 as a conserved effector of the DR pathway and open the avenue for this small RNA molecule and its downstream effectors to be considered as potential drug candidates for the treatment of late-onset diseases and biomarkers for healthy aging in humans.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 4, 5, 6, 7, 8.Proteomics analysis data done in Figure 7 is also provided in Supplementary files 3 and 4 (Upregulated and downregulated processes).

Article and author information

Author details

  1. Manish Pandey

    RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Sakshi Bansal

    RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Sudipta Bar

    Larry L. Hillblom Center for Integrative Studies of Aging, Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amit Kumar Yadav

    NCD, Translational Health Science and Technology Institute, Faridabad, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9445-8156
  5. Nicholas S Sokol

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jason M Tennessen

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3527-5683
  7. Pankaj Kapahi

    Larry L. Hillblom Center for Integrative Studies of Aging, Buck Institute for Research on Aging, Novato, United States
    For correspondence
    Pkapahi@buckinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
  8. Geetanjali Chawla

    RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, India
    For correspondence
    gchawla@rcb.res.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0354-3716

Funding

DBT-Wellcome Trust India Alliance (IA/I(S)/17/1/503085)

  • Geetanjali Chawla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dario Riccardo Valenzano, Max Planck Institute for Biology of Ageing, Germany

Version history

  1. Received: September 1, 2020
  2. Accepted: June 7, 2021
  3. Accepted Manuscript published: June 8, 2021 (version 1)
  4. Version of Record published: June 25, 2021 (version 2)

Copyright

© 2021, Pandey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,899
    views
  • 257
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manish Pandey
  2. Sakshi Bansal
  3. Sudipta Bar
  4. Amit Kumar Yadav
  5. Nicholas S Sokol
  6. Jason M Tennessen
  7. Pankaj Kapahi
  8. Geetanjali Chawla
(2021)
miR-125-chinmo pathway regulates dietary restriction dependent enhancement of lifespan in Drosophila
eLife 10:e62621.
https://doi.org/10.7554/eLife.62621

Share this article

https://doi.org/10.7554/eLife.62621

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.