1. Neuroscience
Download icon

Selective dendritic localization of mRNA in Drosophila mushroom body output neurons

  1. Jessica Mitchell
  2. Carlas S Smith
  3. Josh Titlow
  4. Nils Otto
  5. Pieter van Velde
  6. Martin J Booth
  7. Ilan Davis
  8. Scott Waddell  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Delft University of Technology, Netherlands
Short Report
  • Cited 1
  • Views 2,438
  • Annotations
Cite this article as: eLife 2021;10:e62770 doi: 10.7554/eLife.62770

Abstract

Memory-relevant neuronal plasticity is believed to require local translation of new proteins at synapses. Understanding this process requires the visualization of the relevant mRNAs within these neuronal compartments. Here we used single-molecule fluorescence in situ hybridization (smFISH) to localize mRNAs at subcellular resolution in the adult Drosophila brain. mRNAs for subunits of nicotinic acetylcholine receptors and kinases could be detected within the dendrites of co-labelled Mushroom Body Output Neurons (MBONs) and their relative abundance showed cell-specificity. Moreover, aversive olfactory learning produced a transient increase in the level of CaMKII mRNA within the dendritic compartments of the γ5β′2a MBONs. Localization of specific mRNAs in MBONs before and after learning represents a critical step towards deciphering the role of dendritic translation in the neuronal plasticity underlying behavioural change in Drosophila.

Data availability

Pipeline code and the User Manual are available in the GitHub repository at [https://github.com/qnano/smFISHlearning].An example dataset of raw and processed images is available at [https://figshare.com/articles/dataset/Example_data/13568438].All other processed and raw datasets that support the findings of this study are available at [https://doi.org/10.6084/m9.figshare.13573475].

Article and author information

Author details

  1. Jessica Mitchell

    Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Carlas S Smith

    Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Josh Titlow

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nils Otto

    Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9713-4088
  5. Pieter van Velde

    Delft Center for Systems and Control, Delft University of Technology, Kantens, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7281-8026
  6. Martin J Booth

    Department of Engineering, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Ilan Davis

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5385-3053
  8. Scott Waddell

    Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, United Kingdom
    For correspondence
    scott.waddell@cncb.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4503-6229

Funding

Wellcome Trust (200846/Z/16/Z)

  • Scott Waddell

Wellcome Trust (203261/Z/16/Z)

  • Scott Waddell

ERC

  • Scott Waddell

Netherlands Organisation for Scientific Research

  • Carlas S Smith

Wellcome Trust (107457)

  • Ilan Davis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: September 3, 2020
  2. Accepted: March 15, 2021
  3. Accepted Manuscript published: March 16, 2021 (version 1)
  4. Accepted Manuscript updated: March 18, 2021 (version 2)
  5. Version of Record published: March 26, 2021 (version 3)

Copyright

© 2021, Mitchell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,438
    Page views
  • 317
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Weisheng Wang et al.
    Research Article Updated

    Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human functional magnetic resonance imaging data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.

    1. Neuroscience
    Stanley Heinze et al.
    Tools and Resources Updated

    Insect neuroscience generates vast amounts of highly diverse data, of which only a small fraction are findable, accessible and reusable. To promote an open data culture, we have therefore developed the InsectBrainDatabase (IBdb), a free online platform for insect neuroanatomical and functional data. The IBdb facilitates biological insight by enabling effective cross-species comparisons, by linking neural structure with function, and by serving as general information hub for insect neuroscience. The IBdb allows users to not only effectively locate and visualize data, but to make them widely available for easy, automated reuse via an application programming interface. A unique private mode of the database expands the IBdb functionality beyond public data deposition, additionally providing the means for managing, visualizing, and sharing of unpublished data. This dual function creates an incentive for data contribution early in data management workflows and eliminates the additional effort normally associated with publicly depositing research data.