Response-based outcome predictions and confidence regulate feedback processing and learning

  1. Romy Frömer  Is a corresponding author
  2. Matthew R Nassar
  3. Rasmus Bruckner
  4. Birgit Stürmer
  5. Werner Sommer
  6. Nick Yeung
  1. Brown University, United States
  2. Freie University, Germany
  3. International Psychoanalytic University Berlin, Germany
  4. Humboldt Universität zu Berlin, Germany
  5. University of Oxford, United Kingdom

Abstract

Influential theories emphasize the importance of predictions in learning: we learn from feedback to the extent that it is surprising, and thus conveys new information. Here we explore the hypothesis that surprise depends not only on comparing current events to past experience, but also on online evaluation of performance via internal monitoring. Specifically, we propose that people leverage insights from response-based performance monitoring – outcome predictions and confidence – to control learning from feedback. In line with predictions from a Bayesian inference model, we find that people who are better at calibrating their confidence to the precision of their outcome predictions learn more quickly. Further in line with our proposal, EEG signatures of feedback processing are sensitive to the accuracy of, and confidence in, post-response outcome predictions. Taken together, our results suggest that online predictions and confidence serve to calibrate neural error signals to improve the efficiency of learning.

Data availability

Scripts and source data for all analyses are available under https://github.com/froemero/Outcome-Predictions-and-Confidence-Regulate-Learning.

Article and author information

Author details

  1. Romy Frömer

    Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, United States
    For correspondence
    romy_fromer@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9468-4014
  2. Matthew R Nassar

    Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5397-535X
  3. Rasmus Bruckner

    Department of Education and Psychology, Freie University, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3033-6299
  4. Birgit Stürmer

    General Psychology and Neurocognitive Psychology, International Psychoanalytic University Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Werner Sommer

    Psychology, Humboldt Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nick Yeung

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

NIH Office of the Director (R00 AG054732)

  • Matthew R Nassar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was performed following the guidelines of the ethics committee of the department of Psychology at Humboldt University. Participants gave informed consent to the experiment and were remunerated with course credits or 8 € per hour.

Copyright

© 2021, Frömer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,432
    views
  • 487
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romy Frömer
  2. Matthew R Nassar
  3. Rasmus Bruckner
  4. Birgit Stürmer
  5. Werner Sommer
  6. Nick Yeung
(2021)
Response-based outcome predictions and confidence regulate feedback processing and learning
eLife 10:e62825.
https://doi.org/10.7554/eLife.62825

Share this article

https://doi.org/10.7554/eLife.62825

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.