Response-based outcome predictions and confidence regulate feedback processing and learning

  1. Romy Frömer  Is a corresponding author
  2. Matthew R Nassar
  3. Rasmus Bruckner
  4. Birgit Stürmer
  5. Werner Sommer
  6. Nick Yeung
  1. Brown University, United States
  2. Freie University, Germany
  3. International Psychoanalytic University Berlin, Germany
  4. Humboldt Universität zu Berlin, Germany
  5. University of Oxford, United Kingdom

Abstract

Influential theories emphasize the importance of predictions in learning: we learn from feedback to the extent that it is surprising, and thus conveys new information. Here we explore the hypothesis that surprise depends not only on comparing current events to past experience, but also on online evaluation of performance via internal monitoring. Specifically, we propose that people leverage insights from response-based performance monitoring – outcome predictions and confidence – to control learning from feedback. In line with predictions from a Bayesian inference model, we find that people who are better at calibrating their confidence to the precision of their outcome predictions learn more quickly. Further in line with our proposal, EEG signatures of feedback processing are sensitive to the accuracy of, and confidence in, post-response outcome predictions. Taken together, our results suggest that online predictions and confidence serve to calibrate neural error signals to improve the efficiency of learning.

Data availability

Scripts and source data for all analyses are available under https://github.com/froemero/Outcome-Predictions-and-Confidence-Regulate-Learning.

Article and author information

Author details

  1. Romy Frömer

    Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, United States
    For correspondence
    romy_fromer@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9468-4014
  2. Matthew R Nassar

    Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5397-535X
  3. Rasmus Bruckner

    Department of Education and Psychology, Freie University, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3033-6299
  4. Birgit Stürmer

    General Psychology and Neurocognitive Psychology, International Psychoanalytic University Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Werner Sommer

    Psychology, Humboldt Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nick Yeung

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

NIH Office of the Director (R00 AG054732)

  • Matthew R Nassar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tadeusz Wladyslaw Kononowicz, Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, France

Ethics

Human subjects: The study was performed following the guidelines of the ethics committee of the department of Psychology at Humboldt University. Participants gave informed consent to the experiment and were remunerated with course credits or 8 € per hour.

Version history

  1. Received: September 4, 2020
  2. Accepted: April 30, 2021
  3. Accepted Manuscript published: April 30, 2021 (version 1)
  4. Version of Record published: May 14, 2021 (version 2)
  5. Version of Record updated: November 23, 2021 (version 3)

Copyright

© 2021, Frömer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,108
    views
  • 435
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romy Frömer
  2. Matthew R Nassar
  3. Rasmus Bruckner
  4. Birgit Stürmer
  5. Werner Sommer
  6. Nick Yeung
(2021)
Response-based outcome predictions and confidence regulate feedback processing and learning
eLife 10:e62825.
https://doi.org/10.7554/eLife.62825

Share this article

https://doi.org/10.7554/eLife.62825

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Irini Papazian, Maria Kourouvani ... Lesley Probert
    Research Article

    Autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS) are only partially represented in current experimental models and the development of humanized immune mice is crucial for better understanding of immunopathogenesis and testing of therapeutics. We describe a humanized mouse model with several key features of MS. Severely immunodeficient B2m-NOG mice were transplanted with peripheral blood mononuclear cells (PBMCs) from HLA-DRB1-typed MS and healthy (HI) donors and showed rapid engraftment by human T and B lymphocytes. Mice receiving cells from MS patients with recent/ongoing Epstein–Barr virus reactivation showed high B cell engraftment capacity. Both HLA-DRB1*15 (DR15) MS and DR15 HI mice, not HLA-DRB1*13 MS mice, developed human T cell infiltration of CNS borders and parenchyma. DR15 MS mice uniquely developed inflammatory lesions in brain and spinal cord gray matter, with spontaneous, hCD8 T cell lesions, and mixed hCD8/hCD4 T cell lesions in EAE immunized mice, with variation in localization and severity between different patient donors. Main limitations of this model for further development are poor monocyte engraftment and lack of demyelination, lymph node organization, and IgG responses. These results show that PBMC humanized mice represent promising research tools for investigating MS immunopathology in a patient-specific approach.

    1. Neuroscience
    Ju-Young Lee, Dahee Jung, Sebastien Royer
    Research Article

    Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze.