The rise and fall of the ancient northern pike master sex determining gene

  1. Qiaowei Pan
  2. Romain Feron
  3. Elodie Jouanno
  4. Hugo Darras
  5. Amaury Herpin
  6. Ben Koop
  7. Eric Rondeau
  8. Frederick W Goetz
  9. Wesley A Larson
  10. Louis Bernatchez
  11. Mike Tringali
  12. Stephen S Curran
  13. Eric Saillant
  14. Gael PJ Denys
  15. Frank A von Hippel
  16. Songlin Chen
  17. J Andrés López
  18. Hugo Verreycken
  19. Konrad Ocalewicz
  20. Rene Guyomard
  21. Camille Eche
  22. Jerome Lluch
  23. Celine Roques
  24. Hongxia Hu
  25. Roger Tabor
  26. Patrick DeHaan
  27. Krista M Nichols
  28. Laurent Journot
  29. Hugues Parrinello
  30. Christophe Klopp
  31. Elena A Interesova
  32. Vladimir Trifonov
  33. Manfred Schartl
  34. John H Postlethwait
  35. Yann Guiguen  Is a corresponding author
  1. INRAE, France
  2. French National Institute for Agricultural Research, France
  3. University of Lausanne, Switzerland
  4. University of Victoria, Canada
  5. NOAA, United States
  6. 6.Fisheries Aquatic Science and Technology Laboratory at Alaska Pacific University, United States
  7. University Laval, Canada
  8. Fish and Wildlife Conservation Commission, United States
  9. Auburn University, United States
  10. The University of Southern Mississippi, United States
  11. Muséum national d'Histoire naturelle, France
  12. Northern Arizona University, United States
  13. Yellow Sea Fisheries Research Institute, China
  14. College of Fisheries and Ocean Sciences Fisheries, United States
  15. Research Institute for Nature and Forest (INBO), Belgium
  16. University of Gdansk, Poland
  17. Beijing Fisheries Research Institute, China
  18. U S Fish and Wildlife Service, United States
  19. National Oceanic and Atmospheric Administration, United States
  20. CNRS, INSERM, France
  21. Institut de Génomique Fonctionnelle, France
  22. Tomsk State University, Russian Federation
  23. Novosibirsk State University, Russian Federation
  24. University of Würzburg, Germany
  25. University of Oregon, United States

Abstract

The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex-linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y-chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions.

Data availability

All gene sequences, genomic, Pool-seq and RAD-Seq reads were deposited under the common project number PRJNA634624.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Qiaowei Pan

    PHASE (Animal Phyiology and breeding systems), INRAE, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Romain Feron

    PHASE (Animal Phyiology and breeding systems), INRAE, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Elodie Jouanno

    PHASE, French National Institute for Agricultural Research, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Hugo Darras

    Department of Ecology and Evolution,, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Amaury Herpin

    PHASE (Animal Phyiology and breeding systems), INRAE, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0630-4027
  6. Ben Koop

    Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Eric Rondeau

    Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Frederick W Goetz

    Environmental and Fisheries Sciences Division, NOAA, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wesley A Larson

    6.Fisheries Aquatic Science and Technology Laboratory at Alaska Pacific University, Anchorage, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Louis Bernatchez

    7.Institut de Biologie Intégrative et des Systèmes (IBIS), University Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Mike Tringali

    Florida Marine Research Institute, Fish and Wildlife Conservation Commission, St. Petersburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Stephen S Curran

    School of Fisheries and Aquatic Sciences, Auburn University, Auburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Eric Saillant

    Gulf Coast Research Laboratory, The University of Southern Mississippi, Ocean Springs, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Gael PJ Denys

    Unité Mixte de Service Patrimoine Naturelle, Muséum national d'Histoire naturelle, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Frank A von Hippel

    Department of Biological Sciences, Northern Arizona University, Flagstaff, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9247-0231
  16. Songlin Chen

    Laboratory for Marine Fisheries Science and Food Production Processes, Yellow Sea Fisheries Research Institute, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  17. J Andrés López

    College of Fisheries and Ocean Sciences Fisheries, Fairbanks, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Hugo Verreycken

    Research Institute for Nature and Forest (INBO), Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2060-7005
  19. Konrad Ocalewicz

    Department of Marine Biology and Ecology, University of Gdansk, Gdansk, Poland
    Competing interests
    The authors declare that no competing interests exist.
  20. Rene Guyomard

    Animal genetics, INRAE, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  21. Camille Eche

    Animal Genetics, INRAE, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  22. Jerome Lluch

    Animal Genetics, INRAE, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  23. Celine Roques

    Animal Genetics, INRAE, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  24. Hongxia Hu

    Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  25. Roger Tabor

    U S Fish and Wildlife Service, Lacey, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. Patrick DeHaan

    U S Fish and Wildlife Service, Lacey, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Krista M Nichols

    Conservation Biology Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Laurent Journot

    Institut de Génomique Fonctionnelle, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  29. Hugues Parrinello

    MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  30. Christophe Klopp

    MIAT, INRAE, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7126-5477
  31. Elena A Interesova

    Tomsk State University, Tomsk, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1148-6283
  32. Vladimir Trifonov

    Institute of Molecular and Cellular Biology, Novosibirsk State University, Novosibirsk, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  33. Manfred Schartl

    University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  34. John H Postlethwait

    Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  35. Yann Guiguen

    PHASE (Animal Phyiology and breeding systems), INRAE, Rennes, France
    For correspondence
    yann.guiguen@inrae.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5464-6219

Funding

Agence Nationale de la Recherche (ANR-13-ISV7-0005)

  • Yann Guiguen

Deutsche Forschungsgemeinschaft

  • Manfred Schartl

Agence Nationale de la Recherche (ANR-10-INBS-09)

  • Laurent Journot

Agence Nationale de la Recherche (ANR-10-INBS-09)

  • Celine Roques

National Institute of Health (R01GM085318)

  • John H Postlethwait

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Pan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,374
    views
  • 313
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiaowei Pan
  2. Romain Feron
  3. Elodie Jouanno
  4. Hugo Darras
  5. Amaury Herpin
  6. Ben Koop
  7. Eric Rondeau
  8. Frederick W Goetz
  9. Wesley A Larson
  10. Louis Bernatchez
  11. Mike Tringali
  12. Stephen S Curran
  13. Eric Saillant
  14. Gael PJ Denys
  15. Frank A von Hippel
  16. Songlin Chen
  17. J Andrés López
  18. Hugo Verreycken
  19. Konrad Ocalewicz
  20. Rene Guyomard
  21. Camille Eche
  22. Jerome Lluch
  23. Celine Roques
  24. Hongxia Hu
  25. Roger Tabor
  26. Patrick DeHaan
  27. Krista M Nichols
  28. Laurent Journot
  29. Hugues Parrinello
  30. Christophe Klopp
  31. Elena A Interesova
  32. Vladimir Trifonov
  33. Manfred Schartl
  34. John H Postlethwait
  35. Yann Guiguen
(2021)
The rise and fall of the ancient northern pike master sex determining gene
eLife 10:e62858.
https://doi.org/10.7554/eLife.62858

Share this article

https://doi.org/10.7554/eLife.62858

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.